論文の概要: Towards Robust Semantic Segmentation against Patch-based Attack via Attention Refinement
- arxiv url: http://arxiv.org/abs/2401.01750v2
- Date: Thu, 9 May 2024 09:09:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 17:59:24.213407
- Title: Towards Robust Semantic Segmentation against Patch-based Attack via Attention Refinement
- Title(参考訳): 注意保持によるパッチ攻撃に対するロバストなセマンティックセマンティックセグメンテーションに向けて
- Authors: Zheng Yuan, Jie Zhang, Yude Wang, Shiguang Shan, Xilin Chen,
- Abstract要約: 我々は,アテンション機構がパッチベースの敵攻撃に弱いことを観察した。
本稿では,意味的セグメンテーションモデルの堅牢性を改善するために,ロバスト注意機構(RAM)を提案する。
- 参考スコア(独自算出の注目度): 68.31147013783387
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The attention mechanism has been proven effective on various visual tasks in recent years. In the semantic segmentation task, the attention mechanism is applied in various methods, including the case of both Convolution Neural Networks (CNN) and Vision Transformer (ViT) as backbones. However, we observe that the attention mechanism is vulnerable to patch-based adversarial attacks. Through the analysis of the effective receptive field, we attribute it to the fact that the wide receptive field brought by global attention may lead to the spread of the adversarial patch. To address this issue, in this paper, we propose a Robust Attention Mechanism (RAM) to improve the robustness of the semantic segmentation model, which can notably relieve the vulnerability against patch-based attacks. Compared to the vallina attention mechanism, RAM introduces two novel modules called Max Attention Suppression and Random Attention Dropout, both of which aim to refine the attention matrix and limit the influence of a single adversarial patch on the semantic segmentation results of other positions. Extensive experiments demonstrate the effectiveness of our RAM to improve the robustness of semantic segmentation models against various patch-based attack methods under different attack settings.
- Abstract(参考訳): 近年,様々な視覚的タスクにおいて注意機構が有効であることが証明されている。
セグメンテーションタスクでは、コンボリューションニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)の両方をバックボーンとするなど、様々な方法で注意機構が適用される。
しかし,アテンション機構はパッチベースの敵攻撃に対して脆弱であることがわかった。
実効性受容野の解析を通じて,世界的注目によってもたらされる広視野受容野が,対向パッチの拡散に繋がる可能性が示唆された。
この問題に対処するため,本論文では,パッチベースの攻撃に対する脆弱性を顕著に軽減できるセグメンテーションモデルの堅牢性を改善するために,ロバスト注意機構(RAM)を提案する。
Vallinaのアテンション機構と比較して、RAMはMax Attention SuppressionとRandom Attention Dropoutと呼ばれる2つの新しいモジュールを導入している。
大規模な実験により、異なる攻撃条件下での様々なパッチベースの攻撃方法に対するセマンティックセグメンテーションモデルの堅牢性を向上させるために、我々のRAMの有効性が実証された。
関連論文リスト
- DePatch: Towards Robust Adversarial Patch for Evading Person Detectors in the Real World [13.030804897732185]
本稿では,デカップリング逆パッチ(Decoupled adversarial Patch, DePatch)攻撃を導入し,逆パッチの自己結合問題に対処する。
具体的には、逆パッチをブロックワイドセグメントに分割し、これらのセグメント間の依存性を低減する。
さらに,攻撃能力を向上させるために,境界シフト操作とプログレッシブデカップリング戦略を導入する。
論文 参考訳(メタデータ) (2024-08-13T04:25:13Z) - Embodied Active Defense: Leveraging Recurrent Feedback to Counter Adversarial Patches [37.317604316147985]
敵のパッチに対するディープニューラルネットワークの脆弱性は、モデルロバスト性を高めるための多くの防衛戦略を動機付けている。
本研究では,環境情報を積極的に文脈化して,現実の3次元環境における不整合に対処するEmbodied Active Defense (EAD) を開発した。
論文 参考訳(メタデータ) (2024-03-31T03:02:35Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - Mitigating Adversarial Vulnerability through Causal Parameter Estimation
by Adversarial Double Machine Learning [33.18197518590706]
視覚入力に対する故意に作られた摂動から導かれる敵の例は、ディープニューラルネットワークの決定プロセスに容易に害を与える可能性がある。
本稿では,adversarial Double Machine Learning (ADML) と呼ばれる因果的アプローチを導入する。
ADMLは, 対向的摂動の因果パラメータを直接推定し, 強靭性を損なう可能性のある負の効果を緩和することができる。
論文 参考訳(メタデータ) (2023-07-14T09:51:26Z) - DIFFender: Diffusion-Based Adversarial Defense against Patch Attacks [34.86098237949214]
敵対的攻撃、特にパッチ攻撃は、ディープラーニングモデルの堅牢性と信頼性に重大な脅威をもたらす。
本稿では,テキスト誘導拡散モデルを用いてパッチ攻撃に対処する新しい防御フレームワークであるDIFFenderを紹介する。
DIFFenderは、パッチのローカライゼーションと復元の2つのタスクを単一の拡散モデルフレームワークに統合する。
論文 参考訳(メタデータ) (2023-06-15T13:33:27Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Clustering Effect of (Linearized) Adversarial Robust Models [60.25668525218051]
本稿では, 敵の強靭性に対する新たな理解を提案し, ドメイン適応や頑健性向上といったタスクに適用する。
提案したクラスタリング戦略の合理性と優越性を実験的に評価した。
論文 参考訳(メタデータ) (2021-11-25T05:51:03Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z) - Towards Understanding the Adversarial Vulnerability of Skeleton-based
Action Recognition [133.35968094967626]
骨格に基づく行動認識は、動的状況への強い適応性から注目を集めている。
ディープラーニング技術の助けを借りて、かなり進歩し、現在、良識のある環境で約90%の精度を達成している。
異なる対角的環境下での骨格に基づく行動認識の脆弱性に関する研究はいまだ研究されていない。
論文 参考訳(メタデータ) (2020-05-14T17:12:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。