論文の概要: LinkedIn Post Embeddings: Industrial Scale Embedding Generation and Usage across LinkedIn
- arxiv url: http://arxiv.org/abs/2405.11344v4
- Date: Fri, 17 Oct 2025 21:59:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 00:56:38.039491
- Title: LinkedIn Post Embeddings: Industrial Scale Embedding Generation and Usage across LinkedIn
- Title(参考訳): LinkedIn Post Embeddings: LinkedIn全体での産業規模の埋め込み生成と利用
- Authors: Sudarshan Srinivasa Ramanujam, Akanksha Bindal, Yu Jiang, Timothy J. Hazen, David Golland, Fengyu Zhang, Daqi Sun, Wanning Li, Birjodh Singh Tiwana, Siddharth Dangi, Peng Yan,
- Abstract要約: ポスト埋め込みは、意味を効果的に捉えた埋め込み空間におけるテキストの表現である。
本稿では,事前学習したトランスフォーマーベース大規模言語モデル(LLM)を入力として,微調整を行うLinkedInのポスト埋め込みについて述べる。
我々は、前向きな移行を観察し、独立してトレーニングするのに比べ、すべてのタスクにおけるパフォーマンスの改善につながった。
- 参考スコア(独自算出の注目度): 8.031283297332447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A post embedding (representation of text in embedding space that effectively captures semantic meaning) is a foundational component of LinkedIn that is consumed by product surfaces in retrieval and ranking (e.g., ranking posts in the feed or video tab). This paper presents the post embeddings used at LinkedIn, where a pre-trained transformer-based large language model (LLM) is taken as input and fine-tuned using multi-task learning across a diverse set of semantic labeling tasks. We observe positive transfer, leading to improved performance across all tasks, compared to training them independently. The generated post embeddings outperform baseline models in zero-shot learning, demonstrating its potential for broader applicability. Furthermore, the generated post embeddings' performance surpasses that of OpenAI's ADA-001 and ADA-002 embeddings on LinkedIn specific datasets and tasks. We also describe the offline evaluation methodology and the deployment to our near-line infrastructure, which makes the post embedding available for use within minutes of post creation for any downstream application. We present how the embeddings were applied in the Feed product surface, in both ranking and retrieval stages, and showcase the real world online impact to demonstrate the superior performance of these embeddings. Finally, we also share the results of applying the embeddings to the retrieval system of our video ranking product surface in LinkedIn. These embeddings have been battle-tested in production at LinkedIn for over two years, consistently powering multiple products.
- Abstract(参考訳): 埋め込み(埋め込み空間におけるテキストの表現で意味を効果的に捉える)は、LinkedInの基本的なコンポーネントであり、検索やランキング(フィードやビデオタブのランク付けなど)で製品表面が消費する。
本稿では、LinkedInで使われているポスト埋め込みについて述べる。そこでは、事前学習されたトランスフォーマーベースの大規模言語モデル(LLM)を入力として、多タスク学習を用いて、多様なセマンティックラベリングタスクの集合にまたがって微調整する。
我々は、前向きな移行を観察し、独立してトレーニングするのに比べ、すべてのタスクにおけるパフォーマンスの改善につながった。
生成されたポスト埋め込みはゼロショット学習におけるベースラインモデルよりも優れており、より広範な適用性の可能性を示している。
さらに、生成されたポスト埋め込みのパフォーマンスは、OpenAIのADA-001とADA-002のLinkedIn固有のデータセットやタスクへの埋め込みを上回る。
また、オフライン評価手法とニアラインインフラストラクチャへのデプロイについても述べています。
本稿では, フィード製品表面, ランキングおよび検索段階において, 組込みがどのように適用されたかを示すとともに, 組込みの優れた性能を示すために, 実世界のオンライン効果を示す。
最後に、LinkedInの動画ランキング製品サーフェスの検索システムに埋め込みを適用した結果についても紹介する。
これらの埋め込みはLinkedInで2年以上にわたって実運用環境でテストされてきた。
関連論文リスト
- Training-free LLM Merging for Multi-task Learning [74.93025750111019]
Hi-Mergingは、異なる特殊なLSMを単一のモデルに統合するためのトレーニング不要の方法である。
中国語と英語の両方における複数選択および質問応答タスクの実験は、マルチタスク学習におけるHi-Mergingの能力を検証する。
論文 参考訳(メタデータ) (2025-06-14T07:21:11Z) - Enhancing Input-Label Mapping in In-Context Learning with Contrastive Decoding [71.01099784480597]
大規模言語モデル(LLM)は、コンテキスト内学習(ICL)を通じて、様々なタスクで優れる
In-Context Contrastive Decoding (ICCD)を導入する。
ICCDは、正と負のインコンテキストの例の出力分布を対比することで、入力ラベルマッピングを強調する。
論文 参考訳(メタデータ) (2025-02-19T14:04:46Z) - Task Preference Optimization: Improving Multimodal Large Language Models with Vision Task Alignment [58.94611347128066]
タスク選好最適化(TPO)は、典型的なきめ細かい視覚的タスクから派生した微分可能なタスク選好を利用する新しい手法である。
トレーニング中にリッチなビジュアルラベルを活用することで、TPOはMLLMのマルチモーダル能力とタスク固有のパフォーマンスを大幅に向上させる。
VideoChatとLLaVAによるこのアプローチのインスタンス化は、ベースラインモデルと比較して、総合的に14.6%のマルチモーダル性能の向上を示している。
論文 参考訳(メタデータ) (2024-12-26T18:56:05Z) - TWIST & SCOUT: Grounding Multimodal LLM-Experts by Forget-Free Tuning [54.033346088090674]
TWIST と SCOUT は,事前学習したMLLM に視覚的接地能力を持たせるフレームワークである。
モデルを効果的に微調整するために,SCOUTと呼ばれる高品質な合成データセットを生成する。
このデータセットは、ステップバイステップのマルチモーダル推論プロセスを記述する、豊富な監視信号を提供する。
論文 参考訳(メタデータ) (2024-10-14T13:35:47Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
NVLM 1.0は、フロンティアクラスのマルチモーダル言語モデル(LLM)のファミリーであり、視覚言語タスクの最先端結果を実現する。
トレーニング効率とマルチモーダル推論能力を両立させる新しいアーキテクチャを提案する。
我々は、NVLM-1.0モデルのための生産級マルチモーダリティを開発し、視覚言語タスクに優れる。
論文 参考訳(メタデータ) (2024-09-17T17:59:06Z) - Fine-tuning Multimodal Large Language Models for Product Bundling [53.01642741096356]
Bundle-MLLMは,大規模言語モデル(LLM)をハイブリットアイテムトークン化アプローチにより微調整する新しいフレームワークである。
具体的には、テキスト、メディア、およびリレーショナルデータを統一トークン化に統合し、テキストトークンと非テキストトークンを区別するソフトな分離トークンを導入する。
1)バンドルパターンを学習し,2)製品バンドル固有のマルチモーダルセマンティック理解の強化を行う。
論文 参考訳(メタデータ) (2024-07-16T13:30:14Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Optimization of Prompt Learning via Multi-Knowledge Representation for Vision-Language Models [26.964848679914354]
CoKnowは、リッチなコンテキスト知識を備えたビジョンランゲージモデルのためのPrompt Learningを強化するフレームワークである。
我々は11の公開データセットに対して広範な実験を行い、CoKnowが過去の手法より優れていることを示した。
論文 参考訳(メタデータ) (2024-04-16T07:44:52Z) - Multi-modal Semantic Understanding with Contrastive Cross-modal Feature
Alignment [11.897888221717245]
マルチモーダルな特徴アライメントを実現するためのCLIP誘導型コントラスト学習型アーキテクチャを提案する。
我々のモデルはタスク固有の外部知識を使わずに実装が簡単であり、そのため、他のマルチモーダルタスクに容易に移行できる。
論文 参考訳(メタデータ) (2024-03-11T01:07:36Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
マルチタスク学習(MTL)は、複数の関連するタスクを共同で学習し、共有表現空間から恩恵を受けるフレームワークである。
MTLは、ほとんど重複しない、あるいは重複しないアノテーションで分類タスクで成功することを示す。
本稿では,分散マッチングによるタスク間の知識交換を可能にする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-02T14:18:11Z) - SPHINX: The Joint Mixing of Weights, Tasks, and Visual Embeddings for
Multi-modal Large Language Models [86.478087039015]
モデル重み、チューニングタスク、視覚埋め込みを併用した多目的多モード大言語モデル(MLLM)を提案する。
提案したジョイントミキシングに基づいて,高解像度画像のきめ細かい外観をより正確に捉えるための効率的な手法を提案する。
今後のMLLM研究におけるジョイントミキシングの探求に光を当てることを願っている。
論文 参考訳(メタデータ) (2023-11-13T18:59:47Z) - YOLOR-Based Multi-Task Learning [12.5920336941241]
マルチタスク学習(MTL)は、単一のモデルを用いて複数のタスクを学習し、一般化と共有セマンティクスを前提として、これらすべてのタスクを共同で改善することを目的としている。
マルチタスクに特化したネットワークアーキテクチャYOLOR(You Only Learn One Representation)の構築を提案する。
本手法は,低パラメータ数を維持しつつ,事前学習を行わずに,全てのタスクにおける競合性能を実現する。
論文 参考訳(メタデータ) (2023-09-29T01:42:21Z) - Pre-training Multi-task Contrastive Learning Models for Scientific
Literature Understanding [52.723297744257536]
事前学習言語モデル(LM)は、科学文献理解タスクにおいて有効であることを示す。
文献理解タスク間の共通知識共有を容易にするために,マルチタスクのコントラスト学習フレームワークであるSciMultを提案する。
論文 参考訳(メタデータ) (2023-05-23T16:47:22Z) - Understanding and Improving Information Transfer in Multi-Task Learning [14.43111978531182]
すべてのタスクに対して共有モジュール,各タスクに対して別個の出力モジュールを備えたアーキテクチャについて検討する。
タスクデータ間の不一致が負の転送(または性能の低下)を引き起こし、ポジティブな転送に十分な条件を提供することを示す。
理論的洞察から着想を得た結果,タスクの埋め込みレイヤの整合がマルチタスクトレーニングやトランスファー学習のパフォーマンス向上につながることが示された。
論文 参考訳(メタデータ) (2020-05-02T23:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。