論文の概要: Enhancing Input-Label Mapping in In-Context Learning with Contrastive Decoding
- arxiv url: http://arxiv.org/abs/2502.13738v1
- Date: Wed, 19 Feb 2025 14:04:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 14:00:10.290015
- Title: Enhancing Input-Label Mapping in In-Context Learning with Contrastive Decoding
- Title(参考訳): コントラストデコーディングを用いたインコンテキスト学習における入力ラベルマッピングの強化
- Authors: Keqin Peng, Liang Ding, Yuanxin Ouyang, Meng Fang, Yancheng Yuan, Dacheng Tao,
- Abstract要約: 大規模言語モデル(LLM)は、コンテキスト内学習(ICL)を通じて、様々なタスクで優れる
In-Context Contrastive Decoding (ICCD)を導入する。
ICCDは、正と負のインコンテキストの例の出力分布を対比することで、入力ラベルマッピングを強調する。
- 参考スコア(独自算出の注目度): 71.01099784480597
- License:
- Abstract: Large language models (LLMs) excel at a range of tasks through in-context learning (ICL), where only a few task examples guide their predictions. However, prior research highlights that LLMs often overlook input-label mapping information in ICL, relying more on their pre-trained knowledge. To address this issue, we introduce In-Context Contrastive Decoding (ICCD), a novel method that emphasizes input-label mapping by contrasting the output distributions between positive and negative in-context examples. Experiments on 7 natural language understanding (NLU) tasks show that our ICCD method brings consistent and significant improvement (up to +2.1 improvement on average) upon 6 different scales of LLMs without requiring additional training. Our approach is versatile, enhancing performance with various demonstration selection methods, demonstrating its broad applicability and effectiveness. The code and scripts will be publicly released.
- Abstract(参考訳): 大規模言語モデル (LLM) は、テキスト内学習 (ICL) を通じて様々なタスクを抽出する。
しかし、以前の研究では、LCMはICLのインプットラベルマッピング情報を見落とし、事前学習された知識に依存していることが強調されていた。
In-Context Contrastive Decoding (ICCD) は、入力ラベルのマッピングを強調する新しい手法である。
7つの自然言語理解(NLU)タスクの実験により、我々のICCD法は、追加の訓練を必要とせず、6つの異なるスケールのLLMに対して、一貫性と顕著な改善(平均で+2.1の改善)をもたらすことが示された。
提案手法は多種多様な実演選択手法により性能を向上し,その適用性および有効性を示す。
コードとスクリプトは公開されます。
関連論文リスト
- Language Models Can See Better: Visual Contrastive Decoding For LLM Multimodal Reasoning [15.877954360180468]
MLLM(Multimodal Large Language Models)のトレーニングは、リソース集約型であり、様々なトレーニング制限によって制限される。
本稿では,MVCD(Modular-based Visual Contrastive Decoding)フレームワークを提案する。
我々のフレームワークは、LLMのICL(In-Context Learning)機能と、提案した視覚コントラスト・サンプル・デコーディング(CED)を活用している。
その結果、モデル精度が一貫した改善を示し、復号化戦略における有効成分をうまく説明できた。
論文 参考訳(メタデータ) (2025-02-17T12:47:00Z) - Rectifying Demonstration Shortcut in In-Context Learning [15.08431909212102]
大規模言語モデル(LLM)は、ICL(In-context Learning)能力を利用したいくつかのデモで、様々なタスクを解くことができる。
LLMは、ICL予測を進めるために、インプット-ラベル関係よりも、事前に訓練されたデモのセマンティック先行に頼っていることが多い。
論文 参考訳(メタデータ) (2024-03-14T15:30:14Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Prompt Highlighter: Interactive Control for Multi-Modal LLMs [50.830448437285355]
本研究では,マルチモーダル LLM (LLMs&VLMs) 推論における重要な側面として,明示的な制御可能なテキスト生成を目標とする。
本稿では,新しい推論手法であるPrompt Highlighterを導入し,ユーザが特定のプロンプトスパンをハイライトし,生成中のフォーカスをインタラクティブに制御できるようにする。
推論中、注意重みを通して強調されたトークンでモデルを導くことで、より望ましい出力が得られます。
論文 参考訳(メタデータ) (2023-12-07T13:53:29Z) - IERL: Interpretable Ensemble Representation Learning -- Combining
CrowdSourced Knowledge and Distributed Semantic Representations [11.008412414253662]
大言語モデル(LLM)は、単語の意味を分散意味論の形でエンコードする。
近年の研究では、LLMは意図しない、一貫性のない、あるいは間違ったテキストを出力として生成する傾向があることが示されている。
本稿では,LLMとクラウドソースの知識表現を体系的に組み合わせた新しいアンサンブル学習手法であるInterpretable Ensemble Representation Learning (IERL)を提案する。
論文 参考訳(メタデータ) (2023-06-24T05:02:34Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
複数のタスク入力を処理するために,LLMのコンテキスト内学習機能を活用したOverPromptを提案する。
本実験により,OverPromptはタスク性能を著しく損なうことなく,コスト効率の良いゼロショット分類を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-05-24T10:08:04Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて、文脈内学習による顕著な結果を示している。
ICL-D3IEと呼ばれるシンプルだが効果的なテキスト内学習フレームワークを提案する。
具体的には、ハードトレーニング文書から最も困難で独特なセグメントをハードデモとして抽出する。
論文 参考訳(メタデータ) (2023-03-09T06:24:50Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
画像とテキストを共同で表現するマルチモーダル表現学習手法が提案されている。
これらの手法は,大規模マルチモーダル事前学習から高レベルな意味情報を取得することにより,優れた性能を実現する。
そこで本稿では,非バイアスのDense Contrastive Visual-Linguistic Pretrainingを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:20:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。