論文の概要: How big is Big Data?
- arxiv url: http://arxiv.org/abs/2405.11404v1
- Date: Sat, 18 May 2024 22:13:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 17:59:18.176022
- Title: How big is Big Data?
- Title(参考訳): ビッグデータはどのくらい大きいのか?
- Authors: Daniel T. Speckhard, Tim Bechtel, Luca M. Ghiringhelli, Martin Kuban, Santiago Rigamonti, Claudia Draxl,
- Abstract要約: 一般的な材料科学の機械学習問題において、それが何を意味するかを評価する。
モデルが類似したデータセットにどのように一般化するか、異種ソースから高品質なデータセットを収集できるかを問う。
ビッグデータには,作業のモチベーションを向上する上で,非常に異なる側面に沿って,ユニークな課題が存在していることが分かっています。
- 参考スコア(独自算出の注目度): 0.18472148461613155
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Big data has ushered in a new wave of predictive power using machine learning models. In this work, we assess what {\it big} means in the context of typical materials-science machine-learning problems. This concerns not only data volume, but also data quality and veracity as much as infrastructure issues. With selected examples, we ask (i) how models generalize to similar datasets, (ii) how high-quality datasets can be gathered from heterogenous sources, (iii) how the feature set and complexity of a model can affect expressivity, and (iv) what infrastructure requirements are needed to create larger datasets and train models on them. In sum, we find that big data present unique challenges along very different aspects that should serve to motivate further work.
- Abstract(参考訳): ビッグデータは、機械学習モデルを使用して予測能力の新たな波を導いてきた。
本研究では,教材科学における機械学習の典型的な問題における「ビッグ」の意味を評価する。
これは、データボリュームだけでなく、データ品質やインフラストラクチャの問題と同じくらいの正確性も懸念します。
選択した例で尋ねる
(i)モデルが類似したデータセットにどのように一般化するか。
(II)異種源から高品質なデータセットを収集する方法。
三 モデルの特徴セットと複雑さが表現性にどのように影響するか、
(iv) より大きなデータセットを作成し、その上にモデルをトレーニングするために必要なインフラストラクチャ要件。
まとめると、ビッグデータには、さらなる作業の動機となる、非常に異なる側面に固有の課題が存在することが分かります。
関連論文リスト
- Generative Expansion of Small Datasets: An Expansive Graph Approach [13.053285552524052]
最小限のサンプルから大規模で情報豊富なデータセットを生成する拡張合成モデルを提案する。
自己アテンション層と最適なトランスポートを持つオートエンコーダは、分散一貫性を洗練させる。
結果は同等のパフォーマンスを示し、モデルがトレーニングデータを効果的に増強する可能性を示している。
論文 参考訳(メタデータ) (2024-06-25T02:59:02Z) - UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction [93.77809355002591]
さまざまなデータセット、モデル、評価基準を統一する包括的なフレームワークであるUniTrajを紹介する。
我々は広範な実験を行い、他のデータセットに転送するとモデルの性能が大幅に低下することがわかった。
これらの知見を説明するために,データセットの特徴に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-03-22T10:36:50Z) - On Inductive Biases for Machine Learning in Data Constrained Settings [0.0]
この論文は、データ制約された設定で表現力のあるモデルを学ぶという問題に対する異なる答えを探求する。
ニューラルネットワークを学ぶために、大きなデータセットに頼るのではなく、データ構造を反映した既知の関数によって、いくつかのモジュールを置き換えるつもりです。
我々のアプローチは「帰納的バイアス」のフードの下に置かれており、これは探索するモデルの空間を制限する手元にあるデータの仮説として定義することができる。
論文 参考訳(メタデータ) (2023-02-21T14:22:01Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - A Proposal to Study "Is High Quality Data All We Need?" [8.122270502556374]
本稿では,高品質なベンチマークデータのサブセットの選択方法,および/または生成方法を検討するための実証的研究を提案する。
私たちは、タスクを学ぶために大きなデータセットが本当に必要かどうか、そして、高品質なデータの小さなサブセットが大きなデータセットを置き換えることができるかどうかに答えようとしています。
論文 参考訳(メタデータ) (2022-03-12T10:50:13Z) - Kubric: A scalable dataset generator [73.78485189435729]
KubricはPythonフレームワークで、PyBulletやBlenderとインターフェースして写真リアリスティックなシーンを生成する。
本研究では,3次元NeRFモデルの研究から光フロー推定まで,13種類の異なるデータセットを提示することで,Kubricの有効性を実証する。
論文 参考訳(メタデータ) (2022-03-07T18:13:59Z) - On the Pitfalls of Learning with Limited Data: A Facial Expression
Recognition Case Study [0.5249805590164901]
私達はビデオからの顔表現の認識の問題に焦点を合わせます。
4つのデータベースを異なる複雑さで,9つのディープラーニングアーキテクチャで動画分類を行った。
複雑なトレーニングセットは、トランスファーラーニングと合成生成データでトレーニングすると、より安定したテストセットによく変換されます。
論文 参考訳(メタデータ) (2021-04-02T18:53:41Z) - Occams Razor for Big Data? On Detecting Quality in Large Unstructured
Datasets [0.0]
分析複雑性への新たな傾向は、科学におけるパシモニーやオッカム・ラザーの原理にとって深刻な課題である。
データクラスタリングのための計算的ビルディングブロックアプローチは、最小の計算時間で大規模な非構造化データセットを扱うのに役立つ。
このレビューは、東西の文化的な違いがビッグデータ分析の過程にどのように影響するかを結論付けている。
論文 参考訳(メタデータ) (2020-11-12T16:06:01Z) - Dataset Cartography: Mapping and Diagnosing Datasets with Training
Dynamics [118.75207687144817]
我々はデータセットを特徴付け、診断するモデルベースのツールであるData Mapsを紹介した。
私たちは、トレーニング中の個々のインスタンス上でのモデルの振る舞いという、ほとんど無視された情報のソースを活用しています。
以上の結果から,データ量から品質へのフォーカスの変化は,ロバストなモデルとアウト・オブ・ディストリビューションの一般化に繋がる可能性が示唆された。
論文 参考訳(メタデータ) (2020-09-22T20:19:41Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z) - DeGAN : Data-Enriching GAN for Retrieving Representative Samples from a
Trained Classifier [58.979104709647295]
我々は、トレーニングされたネットワークの将来の学習タスクのために、利用可能なデータの豊富さと関連するデータの欠如の間のギャップを埋める。
利用可能なデータは、元のトレーニングデータセットまたは関連するドメインデータセットの不均衡なサブセットである可能性があるため、代表サンプルを検索するために使用します。
関連ドメインからのデータを活用して最先端のパフォーマンスを実現することを実証する。
論文 参考訳(メタデータ) (2019-12-27T02:05:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。