Metric Dimension and Resolvability of Jaccard Spaces
- URL: http://arxiv.org/abs/2405.11424v2
- Date: Thu, 27 Jun 2024 04:41:07 GMT
- Title: Metric Dimension and Resolvability of Jaccard Spaces
- Authors: Manuel E. Lladser, Alexander J. Paradise,
- Abstract summary: A subset of points in a metric space is said to resolve it if each point in the space is uniquely characterized by its distance to each point in the subset.
We show that a much smaller subset of $2X$ suffices to resolve, with high probability, all different pairs of subsets of cardinality at most $sqrt|X|/ln|X|$, up to a factor.
- Score: 49.1574468325115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A subset of points in a metric space is said to resolve it if each point in the space is uniquely characterized by its distance to each point in the subset. In particular, resolving sets can be used to represent points in abstract metric spaces as Euclidean vectors. Importantly, due to the triangle inequality, points close by in the space are represented as vectors with similar coordinates, which may find applications in classification problems of symbolic objects under suitably chosen metrics. In this manuscript, we address the resolvability of Jaccard spaces, i.e., metric spaces of the form $(2^X,\text{Jac})$, where $2^X$ is the power set of a finite set $X$, and $\text{Jac}$ is the Jaccard distance between subsets of $X$. Specifically, for different $a,b\in 2^X$, $\text{Jac}(a,b)=|a\Delta b|/|a\cup b|$, where $|\cdot|$ denotes size (i.e., cardinality) and $\Delta$ denotes the symmetric difference of sets. We combine probabilistic and linear algebra arguments to construct highly likely but nearly optimal (i.e., of minimal size) resolving sets of $(2^X,\text{Jac})$. In particular, we show that the metric dimension of $(2^X,\text{Jac})$, i.e., the minimum size of a resolving set of this space, is $\Theta(|X|/\ln|X|)$. In addition, we show that a much smaller subset of $2^X$ suffices to resolve, with high probability, all different pairs of subsets of $X$ of cardinality at most $\sqrt{|X|}/\ln|X|$, up to a factor.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Dimension-free Remez Inequalities and norm designs [48.5897526636987]
A class of domains $X$ and test sets $Y$ -- termed emphnorm -- enjoy dimension-free Remez-type estimates.
We show that the supremum of $f$ does not increase by more than $mathcalO(log K)2d$ when $f$ is extended to the polytorus.
arXiv Detail & Related papers (2023-10-11T22:46:09Z) - Tight Bounds for Volumetric Spanners and Applications [19.839528728535274]
Given a set of points of interest, a spanner is a determinant of points using which all the points can be expressed using "small" coefficients.
In this paper, we give almost optimal bounds on the size of spanners for all $ell_p$ vectors, and show that they can be constructed using a simple local search procedure.
arXiv Detail & Related papers (2023-09-29T22:43:30Z) - Parameterized Approximation for Robust Clustering in Discrete Geometric Spaces [2.687607197645453]
We show that even the special case of $k$-Center in dimension $Theta(log n)$ is $(sqrt3/2- o(1))$hard to approximate for FPT algorithms.
We also show that even the special case of $k$-Center in dimension $Theta(log n)$ is $(sqrt3/2- o(1))$hard to approximate for FPT algorithms.
arXiv Detail & Related papers (2023-05-12T08:43:28Z) - Metricizing the Euclidean Space towards Desired Distance Relations in
Point Clouds [1.2366208723499545]
We attack unsupervised learning algorithms, specifically $k$-Means and density-based (DBSCAN) clustering algorithms.
We show that the results of clustering algorithms may not generally be trustworthy, unless there is a standardized and fixed prescription to use a specific distance function.
arXiv Detail & Related papers (2022-11-07T16:37:29Z) - Matching Map Recovery with an Unknown Number of Outliers [0.0]
We consider the problem of finding the matching map between two sets of $d$-dimensional noisy feature-vectors.
We show that, in the high-dimensional setting, if the signal-to-noise ratio is larger than $5(dlog(4nm/alpha))1/4$, the true matching map can be recovered with probability $1-alpha$.
arXiv Detail & Related papers (2022-10-24T15:59:10Z) - Uncertainties in Quantum Measurements: A Quantum Tomography [52.77024349608834]
The observables associated with a quantum system $S$ form a non-commutative algebra $mathcal A_S$.
It is assumed that a density matrix $rho$ can be determined from the expectation values of observables.
Abelian algebras do not have inner automorphisms, so the measurement apparatus can determine mean values of observables.
arXiv Detail & Related papers (2021-12-14T16:29:53Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
It was previously shown that the functionals $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
Here, we show that $|mathbb E[R(z)] - tilde R(z)|_F
arXiv Detail & Related papers (2021-09-06T14:21:43Z) - Linear Bandits on Uniformly Convex Sets [88.3673525964507]
Linear bandit algorithms yield $tildemathcalO(nsqrtT)$ pseudo-regret bounds on compact convex action sets.
Two types of structural assumptions lead to better pseudo-regret bounds.
arXiv Detail & Related papers (2021-03-10T07:33:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.