Beyond Worst-Case Dimensionality Reduction for Sparse Vectors
- URL: http://arxiv.org/abs/2502.19865v1
- Date: Thu, 27 Feb 2025 08:17:47 GMT
- Title: Beyond Worst-Case Dimensionality Reduction for Sparse Vectors
- Authors: Sandeep Silwal, David P. Woodruff, Qiuyi Zhang,
- Abstract summary: We study beyond worst-case dimensionality reduction for $s$-sparse vectors.<n>For any collection $X$ of $s$-sparse vectors in $mathbbRO(s2)$, there exists a linear map to $mathbbRO(s2)$ which emphexactly preserves the norm of $99%$ of the vectors in $X$ in any $ell_p$ norm.<n>We show that both the non-linearity of $f$ and the non-negativity of $
- Score: 47.927989749887864
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study beyond worst-case dimensionality reduction for $s$-sparse vectors. Our work is divided into two parts, each focusing on a different facet of beyond worst-case analysis: We first consider average-case guarantees. A folklore upper bound based on the birthday-paradox states: For any collection $X$ of $s$-sparse vectors in $\mathbb{R}^d$, there exists a linear map to $\mathbb{R}^{O(s^2)}$ which \emph{exactly} preserves the norm of $99\%$ of the vectors in $X$ in any $\ell_p$ norm (as opposed to the usual setting where guarantees hold for all vectors). We give lower bounds showing that this is indeed optimal in many settings: any oblivious linear map satisfying similar average-case guarantees must map to $\Omega(s^2)$ dimensions. The same lower bound also holds for a wide class of smooth maps, including `encoder-decoder schemes', where we compare the norm of the original vector to that of a smooth function of the embedding. These lower bounds reveal a separation result, as an upper bound of $O(s \log(d))$ is possible if we instead use arbitrary (possibly non-smooth) functions, e.g., via compressed sensing algorithms. Given these lower bounds, we specialize to sparse \emph{non-negative} vectors. For a dataset $X$ of non-negative $s$-sparse vectors and any $p \ge 1$, we can non-linearly embed $X$ to $O(s\log(|X|s)/\epsilon^2)$ dimensions while preserving all pairwise distances in $\ell_p$ norm up to $1\pm \epsilon$, with no dependence on $p$. Surprisingly, the non-negativity assumption enables much smaller embeddings than arbitrary sparse vectors, where the best known bounds suffer exponential dependence. Our map also guarantees \emph{exact} dimensionality reduction for $\ell_{\infty}$ by embedding into $O(s\log |X|)$ dimensions, which is tight. We show that both the non-linearity of $f$ and the non-negativity of $X$ are necessary, and provide downstream algorithmic improvements.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Efficient $1$-bit tensor approximations [1.104960878651584]
Our algorithm yields efficient signed cut decompositions in $20$ lines of pseudocode.
We approximate the weight matrices in the open textitMistral-7B-v0.1 Large Language Model to a $50%$ spatial compression.
arXiv Detail & Related papers (2024-10-02T17:56:32Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - A note on estimating the dimension from a random geometric graph [2.3020018305241337]
We study the problem of estimating the dimension $d$ of the underlying space when we have access to the adjacency matrix of the graph.
We also show that, without any condition on the density, a consistent estimator of $d$ exists when $n r_nd to infty$ and $r_n = o(1)$.
arXiv Detail & Related papers (2023-11-21T23:46:44Z) - Optimal Embedding Dimension for Sparse Subspace Embeddings [4.042707434058959]
A random $mtimes n$ matrix $S$ is an oblivious subspace embedding (OSE)
We show that an $mtimes n$ random matrix $S$ with $mgeq (1+theta)d$ is an oblivious subspace embedding with $epsilon = O_theta(1)$.
We use this to construct the first oblivious subspace embedding with $O(d)$ embedding dimension that can be applied faster than current matrix multiplication time.
arXiv Detail & Related papers (2023-11-17T18:01:58Z) - A Nearly-Optimal Bound for Fast Regression with $\ell_\infty$ Guarantee [16.409210914237086]
Given a matrix $Ain mathbbRntimes d$ and a tensor $bin mathbbRn$, we consider the regression problem with $ell_infty$ guarantees.
We show that in order to obtain such $ell_infty$ guarantee for $ell$ regression, one has to use sketching matrices that are dense.
We also develop a novel analytical framework for $ell_infty$ guarantee regression that utilizes the Oblivious Coordinate-wise Embedding (OCE) property
arXiv Detail & Related papers (2023-02-01T05:22:40Z) - Low-Rank Approximation with $1/\epsilon^{1/3}$ Matrix-Vector Products [58.05771390012827]
We study iterative methods based on Krylov subspaces for low-rank approximation under any Schatten-$p$ norm.
Our main result is an algorithm that uses only $tildeO(k/sqrtepsilon)$ matrix-vector products.
arXiv Detail & Related papers (2022-02-10T16:10:41Z) - Optimal Spectral Recovery of a Planted Vector in a Subspace [80.02218763267992]
We study efficient estimation and detection of a planted vector $v$ whose $ell_4$ norm differs from that of a Gaussian vector with the same $ell$ norm.
We show that in the regime $n rho gg sqrtN$, any spectral method from a large class (and more generally, any low-degree of the input) fails to detect the planted vector.
arXiv Detail & Related papers (2021-05-31T16:10:49Z) - The Average-Case Time Complexity of Certifying the Restricted Isometry
Property [66.65353643599899]
In compressed sensing, the restricted isometry property (RIP) on $M times N$ sensing matrices guarantees efficient reconstruction of sparse vectors.
We investigate the exact average-case time complexity of certifying the RIP property for $Mtimes N$ matrices with i.i.d. $mathcalN(0,1/M)$ entries.
arXiv Detail & Related papers (2020-05-22T16:55:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.