CPS-LLM: Large Language Model based Safe Usage Plan Generator for Human-in-the-Loop Human-in-the-Plant Cyber-Physical System
- URL: http://arxiv.org/abs/2405.11458v1
- Date: Sun, 19 May 2024 06:00:18 GMT
- Title: CPS-LLM: Large Language Model based Safe Usage Plan Generator for Human-in-the-Loop Human-in-the-Plant Cyber-Physical System
- Authors: Ayan Banerjee, Aranyak Maity, Payal Kamboj, Sandeep K. S. Gupta,
- Abstract summary: We explore the usage of large language models (LLM) in human-in-the-loop human-in-the-plant cyber-physical systems.
We show that it is relatively straightforward to contextualize an LLM so it can generate domain-specific plans.
We propose CPS-LLM, an LLM retrained using an instruction tuning framework, which ensures that generated plans align with the physical system dynamics.
- Score: 5.3052849646510225
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We explore the usage of large language models (LLM) in human-in-the-loop human-in-the-plant cyber-physical systems (CPS) to translate a high-level prompt into a personalized plan of actions, and subsequently convert that plan into a grounded inference of sequential decision-making automated by a real-world CPS controller to achieve a control goal. We show that it is relatively straightforward to contextualize an LLM so it can generate domain-specific plans. However, these plans may be infeasible for the physical system to execute or the plan may be unsafe for human users. To address this, we propose CPS-LLM, an LLM retrained using an instruction tuning framework, which ensures that generated plans not only align with the physical system dynamics of the CPS but are also safe for human users. The CPS-LLM consists of two innovative components: a) a liquid time constant neural network-based physical dynamics coefficient estimator that can derive coefficients of dynamical models with some unmeasured state variables; b) the model coefficients are then used to train an LLM with prompts embodied with traces from the dynamical system and the corresponding model coefficients. We show that when the CPS-LLM is integrated with a contextualized chatbot such as BARD it can generate feasible and safe plans to manage external events such as meals for automated insulin delivery systems used by Type 1 Diabetes subjects.
Related papers
- MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation.
We propose a novel multi-agent LLM framework that distributes high-level planning and low-level control code generation across specialized LLM agents.
We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting.
arXiv Detail & Related papers (2024-11-26T17:53:44Z) - Dropout MPC: An Ensemble Neural MPC Approach for Systems with Learned Dynamics [0.0]
We propose a novel sampling-based ensemble neural MPC algorithm that employs the Monte-Carlo dropout technique on the learned system model.
The method aims in general at uncertain systems with complex dynamics, where models derived from first principles are hard to infer.
arXiv Detail & Related papers (2024-06-04T17:15:25Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
This work introduces a novel, parameter-adaptive AMPC architecture capable of online tuning without recomputing large datasets and retraining.
We showcase the effectiveness of parameter-adaptive AMPC by controlling the swing-ups of two different real cartpole systems with a severely resource-constrained microcontroller (MCU)
Taken together, these contributions represent a marked step toward the practical application of AMPC in real-world systems.
arXiv Detail & Related papers (2024-04-08T20:02:19Z) - A SysML-based language for evaluating digital twin software reusability in cyber-physical system structure [0.0]
This article introduces the SysML-based Simulated-Physical Systems Modeling Language (SPSysML)
It is a Domain-Specification Language for evaluating component reusability in Cyber-Physical Systems.
The proposed factors assess the design quantitatively.
arXiv Detail & Related papers (2023-03-17T16:56:48Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
We propose a method for synthesising controllers for Markov jump linear systems.
Our method is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS.
We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.
arXiv Detail & Related papers (2022-12-01T17:36:30Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Combining Machine Learning and Agent-Based Modeling to Study Biomedical
Systems [0.0]
Agent-based modeling (ABM) is a well-established paradigm for simulating complex systems via interactions between constituent entities.
Machine learning (ML) refers to approaches whereby statistical algorithms 'learn from data on their own, without imposing a priori theories of system behavior.
arXiv Detail & Related papers (2022-06-02T15:19:09Z) - Modular Deep Reinforcement Learning for Continuous Motion Planning with
Temporal Logic [59.94347858883343]
This paper investigates the motion planning of autonomous dynamical systems modeled by Markov decision processes (MDP)
The novelty is to design an embedded product MDP (EP-MDP) between the LDGBA and the MDP.
The proposed LDGBA-based reward shaping and discounting schemes for the model-free reinforcement learning (RL) only depend on the EP-MDP states.
arXiv Detail & Related papers (2021-02-24T01:11:25Z) - Controlling nonlinear dynamical systems into arbitrary states using
machine learning [77.34726150561087]
We propose a novel and fully data driven control scheme which relies on machine learning (ML)
Exploiting recently developed ML-based prediction capabilities of complex systems, we demonstrate that nonlinear systems can be forced to stay in arbitrary dynamical target states coming from any initial state.
Having this highly flexible control scheme with little demands on the amount of required data on hand, we briefly discuss possible applications that range from engineering to medicine.
arXiv Detail & Related papers (2021-02-23T16:58:26Z) - Automated Adversary Emulation for Cyber-Physical Systems via
Reinforcement Learning [4.763175424744536]
We develop an automated, domain-aware approach to adversary emulation for cyber-physical systems.
We formulate a Markov Decision Process (MDP) model to determine an optimal attack sequence over a hybrid attack graph.
We apply model-based and model-free reinforcement learning (RL) methods to solve the discrete-continuous MDP in a tractable fashion.
arXiv Detail & Related papers (2020-11-09T18:44:29Z) - Modular Transfer Learning with Transition Mismatch Compensation for
Excessive Disturbance Rejection [29.01654847752415]
We propose a transfer learning framework that adapts a control policy for excessive disturbance rejection of an underwater robot.
A modular network of learning policies is applied, composed of a Generalized Control Policy (GCP) and an Online Disturbance Identification Model (ODI)
arXiv Detail & Related papers (2020-07-29T07:44:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.