論文の概要: Enhancing Vehicle Aerodynamics with Deep Reinforcement Learning in Voxelised Models
- arxiv url: http://arxiv.org/abs/2405.11492v1
- Date: Sun, 19 May 2024 09:19:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 17:18:28.101204
- Title: Enhancing Vehicle Aerodynamics with Deep Reinforcement Learning in Voxelised Models
- Title(参考訳): ボクセル化モデルにおける深部強化学習による自動車空力の強化
- Authors: Jignesh Patel, Yannis Spyridis, Vasileios Argyriou,
- Abstract要約: 本稿では,深部強化学習(DRL)を用いた自動車設計における空力最適化の新しい手法を提案する。
提案手法は, 車両形状をボクセルの格子に識別するためにボクセルモデルを用いており, 空力場を詳細に表現することができる。
実験により, 空力性能において, 提案手法の有効性と効率性を実証した。
- 参考スコア(独自算出の注目度): 6.16808916207942
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Aerodynamic design optimisation plays a crucial role in improving the performance and efficiency of automotive vehicles. This paper presents a novel approach for aerodynamic optimisation in car design using deep reinforcement learning (DRL). Traditional optimisation methods often face challenges in handling the complexity of the design space and capturing non-linear relationships between design parameters and aerodynamic performance metrics. This study addresses these challenges by employing DRL to learn optimal aerodynamic design strategies in a voxelised model representation. The proposed approach utilises voxelised models to discretise the vehicle geometry into a grid of voxels, allowing for a detailed representation of the aerodynamic flow field. The Proximal Policy Optimisation (PPO) algorithm is then employed to train a DRL agent to optimise the design parameters of the vehicle with respect to drag force, kinetic energy, and voxel collision count. Experimental results demonstrate the effectiveness and efficiency of the proposed approach in achieving significant results in aerodynamic performance. The findings highlight the potential of DRL techniques for addressing complex aerodynamic design optimisation problems in automotive engineering, with implications for improving vehicle performance, fuel efficiency, and environmental sustainability.
- Abstract(参考訳): 空力設計の最適化は、自動車の性能と効率を向上させる上で重要な役割を果たす。
本稿では,深部強化学習(DRL)を用いた自動車設計における空力最適化の新しい手法を提案する。
従来の最適化手法は、設計空間の複雑さに対処し、設計パラメータと空力性能メトリクスの間の非線形関係をキャプチャする際の課題に直面することが多い。
本研究は, 酸化モデル表現における最適空力設計戦略の学習にDRLを用いることにより, これらの課題に対処する。
提案手法は, 車両形状をボクセルの格子に識別するためにボクセルモデルを用いており, 空力場を詳細に表現することができる。
次に、PPOアルゴリズムを用いてDRLエージェントを訓練し、ドラッグ力、運動エネルギー、ボクセル衝突数に関する車両の設計パラメータを最適化する。
実験により, 空力性能において, 提案手法の有効性と効率性を実証した。
この結果は、自動車工学における複雑な空力設計最適化問題に対処するためのDRL技術の可能性を強調し、車の性能、燃料効率、環境の持続可能性の向上に寄与する。
関連論文リスト
- Airfoil Diffusion: Denoising Diffusion Model For Conditional Airfoil Generation [7.136205674624813]
拡散モデルを用いた翼生成のためのデータ駆動手法を提案する。
我々のモデルは、既存の翼のデータセットに基づいて訓練され、ランダムなベクトルから任意の数の新しい翼を生成することができる。
論文 参考訳(メタデータ) (2024-08-28T16:12:16Z) - Diffusion Models as Optimizers for Efficient Planning in Offline RL [47.0835433289033]
拡散モデルはオフラインの強化学習タスクにおいて強い競争力を示している。
本稿では,より高速な自己回帰モデルを提案する。
これにより、能力を犠牲にすることなく、より効率的な計画を達成することができます。
論文 参考訳(メタデータ) (2024-07-23T03:00:01Z) - Generative AI-based Prompt Evolution Engineering Design Optimization With Vision-Language Model [22.535058343006828]
本稿では,車両設計シナリオでコンテキスト化された,迅速な進化設計最適化(PEDO)フレームワークを提案する。
生成車の設計において,物理に基づく解法と視覚言語モデルを用いて,実用的あるいは機能的な指導を行う。
自動車設計最適化問題に関する調査は,探索の初期段階に発生する潜在的な自動車設計の広範な普及を示唆している。
論文 参考訳(メタデータ) (2024-06-13T14:11:19Z) - Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
本稿では,RLによる報酬モデルの最適化により,最先端拡散モデルを微調整するハイブリッド手法を提案する。
我々は、報酬モデルの補間能力を活用し、オフラインデータにおいて最良の設計を上回るアプローチの能力を実証する。
論文 参考訳(メタデータ) (2024-05-30T03:57:29Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - Aligning Optimization Trajectories with Diffusion Models for Constrained
Design Generation [17.164961143132473]
本稿では,拡散モデルのサンプリング軌跡と従来の物理法に基づく最適化軌跡との整合性を示す学習フレームワークを提案する。
提案手法では,高コストプリプロセッシングや外部サロゲートモデル,ラベル付きデータの追加を必要とせずに,実用的で高性能な設計を2段階で生成することができる。
この結果から, TAは分布内構成における最先端の深層生成モデルより優れ, 推論計算コストを半減することがわかった。
論文 参考訳(メタデータ) (2023-05-29T09:16:07Z) - A Synergistic Framework Leveraging Autoencoders and Generative
Adversarial Networks for the Synthesis of Computational Fluid Dynamics
Results in Aerofoil Aerodynamics [0.5018156030818882]
本研究では,自動エンコーダとGANを組み合わせてCFD結果を生成する手法を提案する。
我々の革新的なフレームワークは、オートエンコーダの本質的な能力を利用して、エアロフォイルジオメトリーを圧縮された20長ベクトル表現にエンコードする。
条件付きGANネットワークは、このベクトルを正確な圧力分布プロットに変換し、固定風速、攻撃角、乱流レベル仕様を考慮に入れている。
論文 参考訳(メタデータ) (2023-05-28T09:46:18Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Design Amortization for Bayesian Optimal Experimental Design [70.13948372218849]
予測情報ゲイン(EIG)のバウンダリに関してパラメータ化された変分モデルを最適化する。
実験者が1つの変分モデルを最適化し、潜在的に無限に多くの設計に対してEIGを推定できる新しいニューラルアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-10-07T02:12:34Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - Deep Learning-Based Inverse Design for Engineering Systems:
Multidisciplinary Design Optimization of Automotive Brakes [2.362412515574206]
Apparent piston travel (APT) とドラッグトルクは、ブレーキ性能を評価する上で最も代表的な要因である。
近年,ディープラーニング (DL) を用いた逆設計の研究により, 最適設計を瞬時に生成する可能性が確立されている。
MIDは、精度と計算コストの観点から、単系統の逆設計と同じような性能を達成した。
論文 参考訳(メタデータ) (2022-02-27T08:29:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。