An Invisible Backdoor Attack Based On Semantic Feature
- URL: http://arxiv.org/abs/2405.11551v1
- Date: Sun, 19 May 2024 13:50:40 GMT
- Title: An Invisible Backdoor Attack Based On Semantic Feature
- Authors: Yangming Chen,
- Abstract summary: Backdoor attacks have severely threatened deep neural network (DNN) models in the past several years.
We propose a novel backdoor attack, making imperceptible changes.
We evaluate our attack on three prominent image classification datasets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Backdoor attacks have severely threatened deep neural network (DNN) models in the past several years. These attacks can occur in almost every stage of the deep learning pipeline. Although the attacked model behaves normally on benign samples, it makes wrong predictions for samples containing triggers. However, most existing attacks use visible patterns (e.g., a patch or image transformations) as triggers, which are vulnerable to human inspection. In this paper, we propose a novel backdoor attack, making imperceptible changes. Concretely, our attack first utilizes the pre-trained victim model to extract low-level and high-level semantic features from clean images and generates trigger pattern associated with high-level features based on channel attention. Then, the encoder model generates poisoned images based on the trigger and extracted low-level semantic features without causing noticeable feature loss. We evaluate our attack on three prominent image classification DNN across three standard datasets. The results demonstrate that our attack achieves high attack success rates while maintaining robustness against backdoor defenses. Furthermore, we conduct extensive image similarity experiments to emphasize the stealthiness of our attack strategy.
Related papers
- NoiseAttack: An Evasive Sample-Specific Multi-Targeted Backdoor Attack Through White Gaussian Noise [0.19820694575112383]
Backdoor attacks pose a significant threat when using third-party data for deep learning development.
We introduce a novel sample-specific multi-targeted backdoor attack, namely NoiseAttack.
This work is the first of its kind to launch a vision backdoor attack with the intent to generate multiple targeted classes.
arXiv Detail & Related papers (2024-09-03T19:24:46Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - SATBA: An Invisible Backdoor Attack Based On Spatial Attention [7.405457329942725]
Backdoor attacks involve the training of Deep Neural Network (DNN) on datasets that contain hidden trigger patterns.
Most existing backdoor attacks suffer from two significant drawbacks: their trigger patterns are visible and easy to detect by backdoor defense or even human inspection.
We propose a novel backdoor attack named SATBA that overcomes these limitations using spatial attention and an U-net based model.
arXiv Detail & Related papers (2023-02-25T10:57:41Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Imperceptible and Robust Backdoor Attack in 3D Point Cloud [62.992167285646275]
We propose a novel imperceptible and robust backdoor attack (IRBA) to tackle this challenge.
We utilize a nonlinear and local transformation, called weighted local transformation (WLT), to construct poisoned samples with unique transformations.
Experiments on three benchmark datasets and four models show that IRBA achieves 80%+ ASR in most cases even with pre-processing techniques.
arXiv Detail & Related papers (2022-08-17T03:53:10Z) - Imperceptible Backdoor Attack: From Input Space to Feature
Representation [24.82632240825927]
Backdoor attacks are rapidly emerging threats to deep neural networks (DNNs)
In this paper, we analyze the drawbacks of existing attack approaches and propose a novel imperceptible backdoor attack.
Our trigger only modifies less than 1% pixels of a benign image while the magnitude is 1.
arXiv Detail & Related papers (2022-05-06T13:02:26Z) - Poison Ink: Robust and Invisible Backdoor Attack [122.49388230821654]
We propose a robust and invisible backdoor attack called Poison Ink''
Concretely, we first leverage the image structures as target poisoning areas, and fill them with poison ink (information) to generate the trigger pattern.
Compared to existing popular backdoor attack methods, Poison Ink outperforms both in stealthiness and robustness.
arXiv Detail & Related papers (2021-08-05T09:52:49Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
The emphbackdoor attack intends to embed hidden backdoors in deep neural networks (DNNs) by poisoning training data.
We propose a novel attack paradigm, the emphfine-grained attack, where we treat the target label from the object-level instead of the image-level.
Experiments show that the proposed methods can successfully attack semantic segmentation models by poisoning only a small proportion of training data.
arXiv Detail & Related papers (2021-03-06T05:50:29Z) - Rethinking the Trigger of Backdoor Attack [83.98031510668619]
Currently, most of existing backdoor attacks adopted the setting of emphstatic trigger, $i.e.,$ triggers across the training and testing images follow the same appearance and are located in the same area.
We demonstrate that such an attack paradigm is vulnerable when the trigger in testing images is not consistent with the one used for training.
arXiv Detail & Related papers (2020-04-09T17:19:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.