NoiseAttack: An Evasive Sample-Specific Multi-Targeted Backdoor Attack Through White Gaussian Noise
- URL: http://arxiv.org/abs/2409.02251v1
- Date: Tue, 3 Sep 2024 19:24:46 GMT
- Title: NoiseAttack: An Evasive Sample-Specific Multi-Targeted Backdoor Attack Through White Gaussian Noise
- Authors: Abdullah Arafat Miah, Kaan Icer, Resit Sendag, Yu Bi,
- Abstract summary: Backdoor attacks pose a significant threat when using third-party data for deep learning development.
We introduce a novel sample-specific multi-targeted backdoor attack, namely NoiseAttack.
This work is the first of its kind to launch a vision backdoor attack with the intent to generate multiple targeted classes.
- Score: 0.19820694575112383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Backdoor attacks pose a significant threat when using third-party data for deep learning development. In these attacks, data can be manipulated to cause a trained model to behave improperly when a specific trigger pattern is applied, providing the adversary with unauthorized advantages. While most existing works focus on designing trigger patterns in both visible and invisible to poison the victim class, they typically result in a single targeted class upon the success of the backdoor attack, meaning that the victim class can only be converted to another class based on the adversary predefined value. In this paper, we address this issue by introducing a novel sample-specific multi-targeted backdoor attack, namely NoiseAttack. Specifically, we adopt White Gaussian Noise (WGN) with various Power Spectral Densities (PSD) as our underlying triggers, coupled with a unique training strategy to execute the backdoor attack. This work is the first of its kind to launch a vision backdoor attack with the intent to generate multiple targeted classes with minimal input configuration. Furthermore, our extensive experimental results demonstrate that NoiseAttack can achieve a high attack success rate against popular network architectures and datasets, as well as bypass state-of-the-art backdoor detection methods. Our source code and experiments are available at https://github.com/SiSL-URI/NoiseAttack/tree/main.
Related papers
- Exploiting the Vulnerability of Large Language Models via Defense-Aware Architectural Backdoor [0.24335447922683692]
We introduce a new type of backdoor attack that conceals itself within the underlying model architecture.
The add-on modules of model architecture layers can detect the presence of input trigger tokens and modify layer weights.
We conduct extensive experiments to evaluate our attack methods using two model architecture settings on five different large language datasets.
arXiv Detail & Related papers (2024-09-03T14:54:16Z) - An Invisible Backdoor Attack Based On Semantic Feature [0.0]
Backdoor attacks have severely threatened deep neural network (DNN) models in the past several years.
We propose a novel backdoor attack, making imperceptible changes.
We evaluate our attack on three prominent image classification datasets.
arXiv Detail & Related papers (2024-05-19T13:50:40Z) - LOTUS: Evasive and Resilient Backdoor Attacks through Sub-Partitioning [49.174341192722615]
Backdoor attack poses a significant security threat to Deep Learning applications.
Recent papers have introduced attacks using sample-specific invisible triggers crafted through special transformation functions.
We introduce a novel backdoor attack LOTUS to address both evasiveness and resilience.
arXiv Detail & Related papers (2024-03-25T21:01:29Z) - Does Few-shot Learning Suffer from Backdoor Attacks? [63.9864247424967]
We show that few-shot learning can still be vulnerable to backdoor attacks.
Our method demonstrates a high Attack Success Rate (ASR) in FSL tasks with different few-shot learning paradigms.
This study reveals that few-shot learning still suffers from backdoor attacks, and its security should be given attention.
arXiv Detail & Related papers (2023-12-31T06:43:36Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Marksman Backdoor: Backdoor Attacks with Arbitrary Target Class [17.391987602738606]
In recent years, machine learning models have been shown to be vulnerable to backdoor attacks.
This paper exploits a novel backdoor attack with a much more powerful payload, denoted as Marksman.
We show empirically that the proposed framework achieves high attack performance while preserving the clean-data performance in several benchmark datasets.
arXiv Detail & Related papers (2022-10-17T15:46:57Z) - Check Your Other Door! Establishing Backdoor Attacks in the Frequency
Domain [80.24811082454367]
We show the advantages of utilizing the frequency domain for establishing undetectable and powerful backdoor attacks.
We also show two possible defences that succeed against frequency-based backdoor attacks and possible ways for the attacker to bypass them.
arXiv Detail & Related papers (2021-09-12T12:44:52Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
The emphbackdoor attack intends to embed hidden backdoors in deep neural networks (DNNs) by poisoning training data.
We propose a novel attack paradigm, the emphfine-grained attack, where we treat the target label from the object-level instead of the image-level.
Experiments show that the proposed methods can successfully attack semantic segmentation models by poisoning only a small proportion of training data.
arXiv Detail & Related papers (2021-03-06T05:50:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.