Polyadic Cantor potential of minimum lacunarity: Special case of super periodic generalized unified Cantor potential
- URL: http://arxiv.org/abs/2405.11617v2
- Date: Sun, 11 Aug 2024 02:19:36 GMT
- Title: Polyadic Cantor potential of minimum lacunarity: Special case of super periodic generalized unified Cantor potential
- Authors: Mohammad Umar, Mohammad Hasan, Vibhav Narayan Singh, Bhabani Prasad Mandal,
- Abstract summary: We introduce the concept of generalized unified Cantor potential (GUCP) with the key parameter $N$.
This system is characterized by total span $L$, stages $S$, scaling parameter $rho$ and two real numbers $mu$ and $nu$.
We show that GUCP system exhibits sharp transmission resonances, differing from traditional quantum systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To bridge the fractal and non-fractal potentials we introduce the concept of generalized unified Cantor potential (GUCP) with the key parameter $N$ which represents the potential count at the stage $S=1$. This system is characterized by total span $L$, stages $S$, scaling parameter $\rho$ and two real numbers $\mu$ and $\nu$. Notably, the polyadic Cantor potential (PCP) system with minimal lacunarity is a specific instance within the GUCP paradigm. Employing the super periodic potential (SPP) formalism, we formulated a closed-form expression for transmission probability $T_{S}(k, N)$ using the $q$-Pochhammer symbol and investigated the features of non-relativistic quantum tunneling through this potential configuration. We show that GUCP system exhibits sharp transmission resonances, differing from traditional quantum systems. Our analysis reveals saturation in the transmission profile with evolving stages $S$ and establishes a significant scaling relationship between reflection probability and wave vector $k$ through analytical derivations.
Related papers
- Transmission through Cantor structured Dirac comb potential [0.0]
We introduce the Cantor-structured Dirac comb potential, referred to as the Cantor Dirac comb (CDC-$rho_N$) potential system.
This study is the first to investigate quantum tunneling through a fractal geometric Dirac comb potential.
arXiv Detail & Related papers (2024-10-11T09:32:31Z) - Tensor network approximation of Koopman operators [0.0]
We propose a framework for approximating the evolution of observables of measure-preserving ergodic systems.
Our approach is based on a spectrally-convergent approximation of the skew-adjoint Koopman generator.
A key feature of this quantum-inspired approximation is that it captures information from a tensor product space of dimension $(2d+1)n$.
arXiv Detail & Related papers (2024-07-09T21:40:14Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Neutron-nucleus dynamics simulations for quantum computers [49.369935809497214]
We develop a novel quantum algorithm for neutron-nucleus simulations with general potentials.
It provides acceptable bound-state energies even in the presence of noise, through the noise-resilient training method.
We introduce a new commutativity scheme called distance-grouped commutativity (DGC) and compare its performance with the well-known qubit-commutativity scheme.
arXiv Detail & Related papers (2024-02-22T16:33:48Z) - The quantum beam splitter with many partially indistinguishable photons:
multiphotonic interference and asymptotic classical correspondence [44.99833362998488]
We present the analysis of the quantum two-port interferometer in the $n rightarrow infty$ limit of $n$ partially indistinguishable photons.
Our main result is that the output distribution is dominated by the $O(sqrtn)$ channels around a certain $j*$ that depends on the degree of indistinguishability.
The form is essentially the doubly-humped semi-classical envelope of the distribution that would arise from $2 j*$ indistinguishable photons, and which reproduces the corresponding classical intensity distribution.
arXiv Detail & Related papers (2023-12-28T01:48:26Z) - Quantum tunneling from a new type of generalized Smith-Volterra-Cantor
potential [0.0]
We introduce and analyze the Smith-Volterra-Cantor potential of power ( n ), denoted as SVC(left(rho, nright))
This novel potential offers a fresh perspective on Cantor-like potential systems within quantum mechanics.
arXiv Detail & Related papers (2023-12-16T17:14:40Z) - Quantum tunneling from a new type of Unified Cantor Potential [0.0]
We introduce a new type of potential system that combines the families of general Cantor (fractal system) and general Smith-Volterra-Cantor (non-fractal system) potentials.
We call this system as Unified Cantor Potential (UCP) system.
arXiv Detail & Related papers (2023-08-16T07:20:20Z) - Information retrieval and eigenstates coalescence in a non-Hermitian
quantum system with anti-$\mathcal{PT}$ symmetry [15.273168396747495]
Non-Hermitian systems with parity-time reversal ($mathcalPT$) or anti-$mathcalPT$ symmetry have attracted a wide range of interest owing to their unique characteristics and counterintuitive phenomena.
We implement a Floquet Hamiltonian of a single qubit with anti-$mathcalPT$ symmetry by periodically driving a dissipative quantum system of a single trapped ion.
arXiv Detail & Related papers (2021-07-27T07:11:32Z) - $\mathcal{PT}$-symmetry breaking in a Kitaev chain with one pair of
gain-loss potentials [0.0]
Parity-time symmetric systems are governed by non-Hermitian Hamiltonians with exceptional-point (EP) degeneracies.
Here, we obtain the $mathcalPT$-threshold for a one-dimensional, finite Kitaev chain.
In particular, for an even chain with zero on-site potential, we find a re-entrant $mathcalPT$-symmetric phase bounded by second-order EP contours.
arXiv Detail & Related papers (2021-03-12T03:10:45Z) - Morphology of three-body quantum states from machine learning [18.56475227525833]
We show that a triangular quantum billiard can be integrable or non-integrable.
We use machine learning tools to analyze properties of probability distributions of individual quantum states.
We find that convolutional neural networks can correctly classify integrable and non-integrable states.
arXiv Detail & Related papers (2021-02-09T17:23:08Z) - Random quantum circuits anti-concentrate in log depth [118.18170052022323]
We study the number of gates needed for the distribution over measurement outcomes for typical circuit instances to be anti-concentrated.
Our definition of anti-concentration is that the expected collision probability is only a constant factor larger than if the distribution were uniform.
In both the case where the gates are nearest-neighbor on a 1D ring and the case where gates are long-range, we show $O(n log(n)) gates are also sufficient.
arXiv Detail & Related papers (2020-11-24T18:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.