Transmission through Cantor structured Dirac comb potential
- URL: http://arxiv.org/abs/2410.08658v1
- Date: Fri, 11 Oct 2024 09:32:31 GMT
- Title: Transmission through Cantor structured Dirac comb potential
- Authors: Mohammad Umar,
- Abstract summary: We introduce the Cantor-structured Dirac comb potential, referred to as the Cantor Dirac comb (CDC-$rho_N$) potential system.
This study is the first to investigate quantum tunneling through a fractal geometric Dirac comb potential.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we introduce the Cantor-structured Dirac comb potential, referred to as the Cantor Dirac comb (CDC-$\rho_{N}$) potential system, and investigate non-relativistic quantum tunneling through this novel potential configuration. This system is engineered by positioning delta potentials at the boundaries of each rectangular potential segment of Cantor potential. This study is the first to investigate quantum tunneling through a fractal geometric Dirac comb potential. This potential system exemplifies a particular instance of the super periodic potential (SPP), a broader class of potentials that generalize locally periodic potentials. Utilizing the theoretical framework of SPP, we derived a closed-form expression for the transmission probability for this potential architecture. We report various transmission characteristics, including the appearance of band-like features and the scaling behavior of the reflection coefficient with wave vector $k$, which is governed by a scaling function expressed as a finite product of the Laue function. A particularly striking feature of the system is the occurrence of sharp transmission resonances, which may prove useful in applications such as highly sharp transmission filters.
Related papers
- Observation of topological transitions associated with a Weyl exceptional ring [1.877600262062263]
Weyl exceptional rings (WER), extended from point-like singularities, are particularly interesting.
We here investigate this topology in a circuit, where the WER is synthesized with a superconducting qubit controllably coupled to a decaying resonator.
We demonstrate a topological transition triggered by shrinking the size of the manifold$-$a unique feature of the WER.
arXiv Detail & Related papers (2024-07-01T02:08:58Z) - Polyadic Cantor potential of minimum lacunarity: Special case of super periodic generalized unified Cantor potential [0.0]
We introduce the concept of generalized unified Cantor potential (GUCP) with the key parameter $N$.
This system is characterized by total span $L$, stages $S$, scaling parameter $rho$ and two real numbers $mu$ and $nu$.
We show that GUCP system exhibits sharp transmission resonances, differing from traditional quantum systems.
arXiv Detail & Related papers (2024-05-19T17:15:10Z) - Neutron-nucleus dynamics simulations for quantum computers [49.369935809497214]
We develop a novel quantum algorithm for neutron-nucleus simulations with general potentials.
It provides acceptable bound-state energies even in the presence of noise, through the noise-resilient training method.
We introduce a new commutativity scheme called distance-grouped commutativity (DGC) and compare its performance with the well-known qubit-commutativity scheme.
arXiv Detail & Related papers (2024-02-22T16:33:48Z) - Unveiling the Quantum Toroidal Dipole in Nanosystems: Quantization,
Interaction Energy, and Measurement [44.99833362998488]
We investigate a quantum particle confined to a toroidal surface in the presence of a filiform current along the system's rotational axis.
Our analysis reveals that the interaction between the particle and the current induces a non-zero toroidal dipole in the particle's stationary states.
arXiv Detail & Related papers (2024-01-26T13:31:32Z) - Quantum tunneling from a new type of generalized Smith-Volterra-Cantor
potential [0.0]
We introduce and analyze the Smith-Volterra-Cantor potential of power ( n ), denoted as SVC(left(rho, nright))
This novel potential offers a fresh perspective on Cantor-like potential systems within quantum mechanics.
arXiv Detail & Related papers (2023-12-16T17:14:40Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Quantum tunneling from family of Cantor potentials in fractional quantum
mechanics [0.0]
We consider two types of potentials: general Cantor and general Smith-Volterra-Cantor potential.
The present study brings for the first time, the study of quantum tunneling through fractal potential in fractional quantum mechanics.
arXiv Detail & Related papers (2022-12-29T06:36:13Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Excited states from eigenvector continuation: the anharmonic oscillator [58.720142291102135]
Eigenvector continuation (EC) has attracted a lot attention in nuclear structure and reactions as a variational resummation tool for many-body expansions.
This work is dedicated to a detailed understanding of the emergence of excited states from the eigenvector continuation approach.
arXiv Detail & Related papers (2021-08-05T19:28:25Z) - The Quantum Mechanics Swampland [0.0]
We investigate non-relativistic quantum mechanical potentials between fermions generated by various classes of QFT operators.
We show that the potentials are nonsingular, despite the presence of terms proportional to $r-3$ and $nabla_inabla_jdelta3(vecr)$.
We propose the emphQuantum Mechanics Swampland, in which the Landscape consists of non-relativistic quantum mechanical potentials that can be UV completed to a QFT, and the Swampland consists of
arXiv Detail & Related papers (2020-12-21T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.