Do No Harm: A Counterfactual Approach to Safe Reinforcement Learning
- URL: http://arxiv.org/abs/2405.11669v1
- Date: Sun, 19 May 2024 20:33:21 GMT
- Title: Do No Harm: A Counterfactual Approach to Safe Reinforcement Learning
- Authors: Sean Vaskov, Wilko Schwarting, Chris L. Baker,
- Abstract summary: Reinforcement Learning for control has become increasingly popular due to its ability to learn rich feedback policies that take into account uncertainty and complex representations of the environment.
In such methods, if agents are in, or must visit, states where constraint violation might be inevitable, it is unclear how much they should be penalized.
We address this challenge by formulating a constraint on the counterfactual harm of the learned policy compared to a default, safe policy.
In a philosophical sense this formulation only penalizes the learner for constraint violations that it caused; in a practical sense it maintains feasibility of the optimal control problem.
- Score: 5.862025534776996
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reinforcement Learning (RL) for control has become increasingly popular due to its ability to learn rich feedback policies that take into account uncertainty and complex representations of the environment. When considering safety constraints, constrained optimization approaches, where agents are penalized for constraint violations, are commonly used. In such methods, if agents are initialized in, or must visit, states where constraint violation might be inevitable, it is unclear how much they should be penalized. We address this challenge by formulating a constraint on the counterfactual harm of the learned policy compared to a default, safe policy. In a philosophical sense this formulation only penalizes the learner for constraint violations that it caused; in a practical sense it maintains feasibility of the optimal control problem. We present simulation studies on a rover with uncertain road friction and a tractor-trailer parking environment that demonstrate our constraint formulation enables agents to learn safer policies than contemporary constrained RL methods.
Related papers
- RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
We propose a reinforcement learning framework that combines risk-sensitive control with an adaptive action space curriculum.
We show that our algorithm is capable of learning high-speed policies for a real-world off-road driving task.
arXiv Detail & Related papers (2024-05-07T23:32:36Z) - Concurrent Learning of Policy and Unknown Safety Constraints in Reinforcement Learning [4.14360329494344]
Reinforcement learning (RL) has revolutionized decision-making across a wide range of domains over the past few decades.
Yet, deploying RL policies in real-world scenarios presents the crucial challenge of ensuring safety.
Traditional safe RL approaches have predominantly focused on incorporating predefined safety constraints into the policy learning process.
We propose a novel approach that concurrently learns a safe RL control policy and identifies the unknown safety constraint parameters of a given environment.
arXiv Detail & Related papers (2024-02-24T20:01:15Z) - Resilient Constrained Reinforcement Learning [87.4374430686956]
We study a class of constrained reinforcement learning (RL) problems in which multiple constraint specifications are not identified before study.
It is challenging to identify appropriate constraint specifications due to the undefined trade-off between the reward training objective and the constraint satisfaction.
We propose a new constrained RL approach that searches for policy and constraint specifications together.
arXiv Detail & Related papers (2023-12-28T18:28:23Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
We propose a safe reinforcement learning approach that can jointly learn the environment and optimize the control policy.
Our approach can effectively enforce hard safety constraints and significantly outperform CMDP-based baseline methods in system safe rate measured via simulations.
arXiv Detail & Related papers (2022-09-29T20:49:25Z) - Enhancing Safe Exploration Using Safety State Augmentation [71.00929878212382]
We tackle the problem of safe exploration in model-free reinforcement learning.
We derive policies for scheduling the safety budget during training.
We show that Simmer can stabilize training and improve the performance of safe RL with average constraints.
arXiv Detail & Related papers (2022-06-06T15:23:07Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
We propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem.
P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective.
We show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
arXiv Detail & Related papers (2022-05-24T06:15:51Z) - Learn Zero-Constraint-Violation Policy in Model-Free Constrained
Reinforcement Learning [7.138691584246846]
We propose the safe set actor-critic (SSAC) algorithm, which confines the policy update using safety-oriented energy functions.
The safety index is designed to increase rapidly for potentially dangerous actions.
We claim that we can learn the energy function in a model-free manner similar to learning a value function.
arXiv Detail & Related papers (2021-11-25T07:24:30Z) - Learning Barrier Certificates: Towards Safe Reinforcement Learning with
Zero Training-time Violations [64.39401322671803]
This paper explores the possibility of safe RL algorithms with zero training-time safety violations.
We propose an algorithm, Co-trained Barrier Certificate for Safe RL (CRABS), which iteratively learns barrier certificates, dynamics models, and policies.
arXiv Detail & Related papers (2021-08-04T04:59:05Z) - Minimizing Safety Interference for Safe and Comfortable Automated
Driving with Distributional Reinforcement Learning [3.923354711049903]
We propose a distributional reinforcement learning framework to learn adaptive policies that can tune their level of conservativity at run-time based on the desired comfort and utility.
We show that our algorithm learns policies that can still drive reliable when the perception noise is two times higher than the training configuration for automated merging and crossing at occluded intersections.
arXiv Detail & Related papers (2021-07-15T13:36:55Z) - Lyapunov Barrier Policy Optimization [15.364174084072872]
We propose a new method, LBPO, that uses a Lyapunov-based barrier function to restrict the policy update to a safe set for each training iteration.
Our method also allows the user to control the conservativeness of the agent with respect to the constraints in the environment.
arXiv Detail & Related papers (2021-03-16T17:58:27Z) - Constrained Markov Decision Processes via Backward Value Functions [43.649330976089004]
We model the problem of learning with constraints as a Constrained Markov Decision Process.
A key contribution of our approach is to translate cumulative cost constraints into state-based constraints.
We provide theoretical guarantees under which the agent converges while ensuring safety over the course of training.
arXiv Detail & Related papers (2020-08-26T20:56:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.