Review of Interpretable Machine Learning Models for Disease Prognosis
- URL: http://arxiv.org/abs/2405.11672v4
- Date: Sun, 8 Sep 2024 18:14:11 GMT
- Title: Review of Interpretable Machine Learning Models for Disease Prognosis
- Authors: Jinzhi Shen, Ke Ma,
- Abstract summary: interpretable machine learning has garnered significant attention in the wake of the COVID-19 pandemic.
This literature review delves into the applications of interpretable machine learning in predicting the prognosis of respiratory diseases.
- Score: 6.758348517014495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In response to the COVID-19 pandemic, the integration of interpretable machine learning techniques has garnered significant attention, offering transparent and understandable insights crucial for informed clinical decision making. This literature review delves into the applications of interpretable machine learning in predicting the prognosis of respiratory diseases, particularly focusing on COVID-19 and its implications for future research and clinical practice. We reviewed various machine learning models that are not only capable of incorporating existing clinical domain knowledge but also have the learning capability to explore new information from the data. These models and experiences not only aid in managing the current crisis but also hold promise for addressing future disease outbreaks. By harnessing interpretable machine learning, healthcare systems can enhance their preparedness and response capabilities, thereby improving patient outcomes and mitigating the impact of respiratory diseases in the years to come.
Related papers
- Machine Learning Applications in Medical Prognostics: A Comprehensive Review [0.0]
Machine learning (ML) has revolutionized medical prognostics by integrating advanced algorithms with clinical data.
RF models demonstrate robust performance in handling high-dimensional data.
CNNs have shown exceptional accuracy in cancer detection.
LSTM networks excel in analyzing temporal data, providing accurate predictions of clinical deterioration.
arXiv Detail & Related papers (2024-08-05T09:41:34Z) - Knowledge-Informed Machine Learning for Cancer Diagnosis and Prognosis:
A review [2.2268038840298714]
We review the state-of-the-art machine learning studies that adopted the fusion of biomedical knowledge and data.
We provide an overview of diverse forms of knowledge representation and current strategies of knowledge integration into machine learning pipelines.
arXiv Detail & Related papers (2024-01-12T07:01:36Z) - Privacy-preserving machine learning for healthcare: open challenges and
future perspectives [72.43506759789861]
We conduct a review of recent literature concerning Privacy-Preserving Machine Learning (PPML) for healthcare.
We primarily focus on privacy-preserving training and inference-as-a-service.
The aim of this review is to guide the development of private and efficient ML models in healthcare.
arXiv Detail & Related papers (2023-03-27T19:20:51Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
We present a machine learning framework, AutoPrognosis 2.0, to develop diagnostic and prognostic models.
We provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank.
Our risk score has been implemented as a web-based decision support tool and can be publicly accessed by patients and clinicians worldwide.
arXiv Detail & Related papers (2022-10-21T16:31:46Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Causal Machine Learning for Healthcare and Precision Medicine [16.846051073534966]
Causal machine learning (CML) has experienced increasing popularity in healthcare.
We explore how causal inference can be incorporated into different aspects of clinical decision support systems.
arXiv Detail & Related papers (2022-05-23T15:45:21Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
We introduce COVID-Net Biochem, a versatile and explainable framework for constructing machine learning models.
We apply this framework to predict COVID-19 patient survival and the likelihood of developing Acute Kidney Injury during hospitalization.
arXiv Detail & Related papers (2022-04-24T07:38:37Z) - Machine Learning Applications in Diagnosis, Treatment and Prognosis of
Lung Cancer [22.84388553607303]
We provide an overview of machine learning-based approaches that strengthen the varying aspects of lung cancer diagnosis and therapy.
We highlight the challenges and opportunities for future applications of machine learning in lung cancer.
arXiv Detail & Related papers (2022-03-05T17:43:57Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.