論文の概要: QComp: A QSAR-Based Data Completion Framework for Drug Discovery
- arxiv url: http://arxiv.org/abs/2405.11703v1
- Date: Mon, 20 May 2024 00:01:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 14:43:16.075998
- Title: QComp: A QSAR-Based Data Completion Framework for Drug Discovery
- Title(参考訳): QComp: 医薬品発見のためのQSARベースのデータ補完フレームワーク
- Authors: Bingjia Yang, Yunsie Chung, Archer Y. Yang, Bo Yuan, Xiang Yu,
- Abstract要約: 生体内および生体内実験では、化合物の有効性と毒性に関連する生化学的活性が明らかにされている。
実験データは、巨大な、絶え間なく進化し、スパースなデータセットに蓄積される。
この問題に対処するデータ補完フレームワークであるQSAR-Complete (QComp) を開発した。
- 参考スコア(独自算出の注目度): 9.368383542874863
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In drug discovery, in vitro and in vivo experiments reveal biochemical activities related to the efficacy and toxicity of compounds. The experimental data accumulate into massive, ever-evolving, and sparse datasets. Quantitative Structure-Activity Relationship (QSAR) models, which predict biochemical activities using only the structural information of compounds, face challenges in integrating the evolving experimental data as studies progress. We develop QSAR-Complete (QComp), a data completion framework to address this issue. Based on pre-existing QSAR models, QComp utilizes the correlation inherent in experimental data to enhance prediction accuracy across various tasks. Moreover, QComp emerges as a promising tool for guiding the optimal sequence of experiments by quantifying the reduction in statistical uncertainty for specific endpoints, thereby aiding in rational decision-making throughout the drug discovery process.
- Abstract(参考訳): 薬物発見において、in vitroおよびin vivo実験は化合物の有効性と毒性に関連する生化学的活性を明らかにする。
実験データは、巨大な、絶え間なく進化し、スパースなデータセットに蓄積される。
化合物の構造情報のみを用いて生化学的活動を予測する定量的構造-活性関係モデル(QSAR)は、研究の進展に伴い、進化する実験データを統合する上での課題に直面している。
この問題に対処するデータ補完フレームワークであるQSAR-Complete (QComp) を開発した。
既存のQSARモデルに基づいて、QCompは実験データに固有の相関を利用して、様々なタスクにおける予測精度を向上させる。
さらに、QCompは、特定のエンドポイントに対する統計的不確実性の低下を定量化し、薬物発見プロセス全体を通して合理的な意思決定を支援することによって、実験の最適なシーケンスを導くための有望なツールとして出現する。
関連論文リスト
- ScholarChemQA: Unveiling the Power of Language Models in Chemical Research Question Answering [54.80411755871931]
質問回答(QA)は、言語モデルの推論と知識の深さを効果的に評価する。
化学QAは、複雑な化学情報を理解しやすい形式に効果的に翻訳することで、教育と研究の両方において重要な役割を担っている。
このデータセットは、不均衡なデータ分散や、潜在的に有用である可能性のあるかなりの量の未ラベルデータを含む、典型的な現実世界の課題を反映している。
収集したデータを完全に活用して,化学的な問題に効果的に答えるQAMatchモデルを提案する。
論文 参考訳(メタデータ) (2024-07-24T01:46:55Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - From Theory to Therapy: Reframing SBDD Model Evaluation via Practical Metrics [21.78568415483299]
ビナドッキングスコアの信頼性は、過度に適合する可能性があるため、ますます疑問視されている。
本稿では、生成分子と既知の活性化合物との類似性の評価を含む総合的な評価フレームワークを提案する。
提案するメトリクスとデータセットはこのギャップを埋めることを目的としており、将来のSBDDモデルの実用性を高める。
論文 参考訳(メタデータ) (2024-06-13T10:23:52Z) - Analysis of Atom-level pretraining with Quantum Mechanics (QM) data for Graph Neural Networks Molecular property models [0.0]
量子力学(QM)データを用いた原子レベルの事前トレーニングは、トレーニングデータとテストデータ間の分布類似性に関する仮定違反を軽減することができることを示す。
隠れ状態の分子表現を解析し、QMデータに対する分子レベルと原子レベルの事前学習の効果を比較するのは、これが初めてである。
論文 参考訳(メタデータ) (2024-05-23T17:51:05Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
AIによる薬物発見の大きな課題は、高品質なデータの不足である。
薬物動態の4つの重要なパラメータを同時に予測するPEMAL法を開発した。
実験の結果,PEMALは一般的なグラフニューラルネットワークに比べてデータ需要を著しく低減することがわかった。
論文 参考訳(メタデータ) (2024-04-16T07:42:55Z) - Drug Discovery under Covariate Shift with Domain-Informed Prior
Distributions over Functions [30.305418761024143]
実世界の薬物発見タスクは、しばしばラベル付きデータの不足とかなりの範囲のデータによって特徴づけられる。
我々は、データ生成プロセスの明示的な事前知識を事前分布にエンコードする原理的な方法を提案する。
我々は,Q-SAVIを組み込んで,事前知識のような化学空間をモデリングプロセスに組み込むことで,相当な精度と校正が可能であることを実証した。
論文 参考訳(メタデータ) (2023-07-14T05:01:10Z) - Development and Evaluation of Conformal Prediction Methods for QSAR [0.5161531917413706]
定量的構造活性相関モデル(QSAR)は、化合物の生物活性を予測するために一般的に用いられる手法である。
優れた予測性能を達成する機械学習(ML)アルゴリズムの多くは、予測の不確実性を推定するためのいくつかのアドオンメソッドを必要とする。
コンフォーマル予測(CP)は予測アルゴリズムに非依存であり、データ分布の弱い仮定の下で有効な予測間隔を生成できる。
論文 参考訳(メタデータ) (2023-04-03T13:41:09Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - HINT: Hierarchical Interaction Network for Trial Outcome Prediction
Leveraging Web Data [56.53715632642495]
臨床試験は、有効性、安全性、または患者採用の問題により、不確実な結果に直面する。
本稿では,より一般的な臨床試験結果予測のための階層型Interaction Network(HINT)を提案する。
論文 参考訳(メタデータ) (2021-02-08T15:09:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。