論文の概要: Adaptive Batch Normalization Networks for Adversarial Robustness
- arxiv url: http://arxiv.org/abs/2405.11708v1
- Date: Mon, 20 May 2024 00:58:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 14:33:17.437165
- Title: Adaptive Batch Normalization Networks for Adversarial Robustness
- Title(参考訳): 逆ロバスト性のための適応バッチ正規化ネットワーク
- Authors: Shao-Yuan Lo, Vishal M. Patel,
- Abstract要約: 敵防衛訓練(Adversarial Training、AT)は、現代の敵防衛の標準的基盤である。
テスト時間領域適応の最近の進歩に触発された適応バッチ正規化ネットワーク(ABNN)を提案する。
ABNNは、デジタルおよび物理的に実現可能な攻撃に対する敵の堅牢性を一貫して改善する。
- 参考スコア(独自算出の注目度): 33.14617293166724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep networks are vulnerable to adversarial examples. Adversarial Training (AT) has been a standard foundation of modern adversarial defense approaches due to its remarkable effectiveness. However, AT is extremely time-consuming, refraining it from wide deployment in practical applications. In this paper, we aim at a non-AT defense: How to design a defense method that gets rid of AT but is still robust against strong adversarial attacks? To answer this question, we resort to adaptive Batch Normalization (BN), inspired by the recent advances in test-time domain adaptation. We propose a novel defense accordingly, referred to as the Adaptive Batch Normalization Network (ABNN). ABNN employs a pre-trained substitute model to generate clean BN statistics and sends them to the target model. The target model is exclusively trained on clean data and learns to align the substitute model's BN statistics. Experimental results show that ABNN consistently improves adversarial robustness against both digital and physically realizable attacks on both image and video datasets. Furthermore, ABNN can achieve higher clean data performance and significantly lower training time complexity compared to AT-based approaches.
- Abstract(参考訳): ディープネットワークは敵の例に弱い。
敵防衛訓練(AT)は、その顕著な効果から、現代の敵防衛の標準的基盤となっている。
しかし、ATは極めて時間がかかり、実用アプリケーションへの広範なデプロイを控えている。
本稿では,非AT防衛を目標として,ATを排除しつつも,強力な敵攻撃に対して頑健な防衛方法を設計する方法を提案する。
この質問に答えるために、テスト時間領域適応の最近の進歩に触発された適応バッチ正規化(BN)を利用する。
本稿では,適応バッチ正規化ネットワーク(ABNN)と呼ばれる新しい防衛手法を提案する。
ABNNは、訓練済みの代替モデルを使用して、クリーンBN統計を生成し、ターゲットモデルに送信する。
対象モデルはクリーンなデータにのみ訓練され、代替モデルのBN統計を整列することを学ぶ。
実験結果から、ABNNは画像データセットとビデオデータセットの両方に対するデジタルおよび物理的に実現可能な攻撃に対して、常に敵のロバスト性を改善することが示された。
さらに、ATベースのアプローチに比べて、ABNNはよりクリーンなデータ性能を向上し、トレーニング時間の複雑さを著しく低減することができる。
関連論文リスト
- Towards Deep Learning Models Resistant to Transfer-based Adversarial
Attacks via Data-centric Robust Learning [16.53553150596255]
敵の訓練(AT)は、ホワイトボックス攻撃に対する最強の防御として認められている。
我々はこの新しい防衛パラダイムをデータ中心ロバスト学習(DRL)と呼ぶ。
論文 参考訳(メタデータ) (2023-10-15T17:20:42Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - AccelAT: A Framework for Accelerating the Adversarial Training of Deep
Neural Networks through Accuracy Gradient [12.118084418840152]
アドリヤトレーニングを利用して、悪意のある変更データに対する堅牢なディープニューラルネットワーク(DNN)モデルを開発する。
本研究の目的は、敵の攻撃に対して堅牢なDNNモデルの迅速な開発を可能にするために、敵の訓練を加速することである。
論文 参考訳(メタデータ) (2022-10-13T10:31:51Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
モデルトレーニングに敵の例を注入する最も効果的な戦略は、敵のトレーニングであることが証明されている。
本稿では, LAtent bounDary-guided aDvErsarial tRaining という新たな逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T07:40:55Z) - Alleviating Robust Overfitting of Adversarial Training With Consistency
Regularization [9.686724616328874]
対戦訓練(AT)は、ディープニューラルネットワーク(DNN)を敵の攻撃から守る最も効果的な方法の1つであることが証明されている。
強靭性は特定の段階で急激に低下し、常にATの間に存在する。
半教師付き学習の一般的なテクニックである一貫性の正規化は、ATと同じような目標を持ち、堅牢なオーバーフィッティングを軽減するために使用できる。
論文 参考訳(メタデータ) (2022-05-24T03:18:43Z) - Learning from Attacks: Attacking Variational Autoencoder for Improving
Image Classification [17.881134865491063]
敵対的攻撃はディープニューラルネットワーク(DNN)の堅牢性に対する脅威と見なされることが多い。
この研究は、異なる視点から敵の攻撃を分析する。つまり、敵の例は、予測に有用な暗黙の情報を含んでいる。
データ自己表現とタスク固有の予測にDNNの利点を利用するアルゴリズムフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-11T08:48:26Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
敵の訓練(AT)は、敵の攻撃に対する最も信頼できる防御の1つと考えられている。
近年の研究では、新たな脅威モデルの下での対向サンプルによる一般化の改善が示されている。
我々は、JSTM(Joint Space Threat Model)と呼ばれる新しい脅威モデルを提案する。
JSTMでは,新たな敵攻撃・防衛手法が開発されている。
論文 参考訳(メタデータ) (2021-12-12T21:08:14Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Universal Adversarial Training with Class-Wise Perturbations [78.05383266222285]
敵の訓練は 敵の攻撃を防御するために 最も広く使われる方法です
この作業では、UAPがすべてのクラスを等しく攻撃しないことがわかります。
我々は,対人訓練におけるクラスワイドUAPの利用を提案することで,SOTA UATを改善した。
論文 参考訳(メタデータ) (2021-04-07T09:05:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。