論文の概要: Efficient Multi-agent Reinforcement Learning by Planning
- arxiv url: http://arxiv.org/abs/2405.11778v1
- Date: Mon, 20 May 2024 04:36:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 14:13:43.646112
- Title: Efficient Multi-agent Reinforcement Learning by Planning
- Title(参考訳): プランニングによる効率的なマルチエージェント強化学習
- Authors: Qihan Liu, Jianing Ye, Xiaoteng Ma, Jun Yang, Bin Liang, Chongjie Zhang,
- Abstract要約: マルチエージェント強化学習(MARL)アルゴリズムは、大規模意思決定タスクの解決において、目覚ましいブレークスルーを達成している。
既存のMARLアルゴリズムの多くはモデルフリーであり、サンプル効率を制限し、より困難なシナリオでの適用を妨げている。
政策探索のための集中型モデルとモンテカルロ木探索(MCTS)を組み合わせたMAZeroアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 33.51282615335009
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent reinforcement learning (MARL) algorithms have accomplished remarkable breakthroughs in solving large-scale decision-making tasks. Nonetheless, most existing MARL algorithms are model-free, limiting sample efficiency and hindering their applicability in more challenging scenarios. In contrast, model-based reinforcement learning (MBRL), particularly algorithms integrating planning, such as MuZero, has demonstrated superhuman performance with limited data in many tasks. Hence, we aim to boost the sample efficiency of MARL by adopting model-based approaches. However, incorporating planning and search methods into multi-agent systems poses significant challenges. The expansive action space of multi-agent systems often necessitates leveraging the nearly-independent property of agents to accelerate learning. To tackle this issue, we propose the MAZero algorithm, which combines a centralized model with Monte Carlo Tree Search (MCTS) for policy search. We design a novel network structure to facilitate distributed execution and parameter sharing. To enhance search efficiency in deterministic environments with sizable action spaces, we introduce two novel techniques: Optimistic Search Lambda (OS($\lambda$)) and Advantage-Weighted Policy Optimization (AWPO). Extensive experiments on the SMAC benchmark demonstrate that MAZero outperforms model-free approaches in terms of sample efficiency and provides comparable or better performance than existing model-based methods in terms of both sample and computational efficiency. Our code is available at https://github.com/liuqh16/MAZero.
- Abstract(参考訳): マルチエージェント強化学習(MARL)アルゴリズムは、大規模意思決定タスクの解決において、目覚ましいブレークスルーを達成している。
それでも、既存のMARLアルゴリズムのほとんどはモデルフリーであり、サンプル効率を制限し、より困難なシナリオにおける適用性を妨げている。
対照的に、モデルベース強化学習(MBRL)、特にMuZeroのような計画統合アルゴリズムは、多くのタスクにおいて限られたデータで超人的なパフォーマンスを示す。
したがって、モデルベースアプローチを採用することにより、MARLのサンプル効率を高めることを目指している。
しかし,マルチエージェントシステムに計画手法と探索手法を組み込むことが大きな課題となっている。
マルチエージェントシステムの拡張行動空間は、学習を加速するためにエージェントのほぼ独立性を活用する必要があることが多い。
この問題に対処するため,政策探索のための集中型モデルとモンテカルロ木探索(MCTS)を組み合わせたMAZeroアルゴリズムを提案する。
分散実行とパラメータ共有を容易にする新しいネットワーク構造を設計する。
動作空間を大きくした決定論的環境における探索効率を向上させるために,最適化検索ラムダ (OS($\lambda$)) とアドバンテージ重み付きポリシー最適化 (AWPO) の2つの新しい手法を導入する。
SMACベンチマークの大規模な実験により、MAZeroはサンプル効率の点でモデルフリーアプローチより優れており、サンプル効率と計算効率の両面で既存のモデルベース手法と同等または優れた性能を提供することが示された。
私たちのコードはhttps://github.com/liuqh16/MAZero.comから入手可能です。
関連論文リスト
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
このフレームワークはMonte Carlo Tree Search (MCTS)と反復的なSelf-Refineを組み合わせて推論パスを最適化する。
このフレームワークは、一般的なベンチマークと高度なベンチマークでテストされており、探索効率と問題解決能力の点で優れた性能を示している。
論文 参考訳(メタデータ) (2024-10-03T18:12:29Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
大規模深層ニューラルネットワークに対する多目的最適化問題を解くことは、損失ランドスケープの複雑さと高価な計算コストのために難しい課題である。
本稿では,専門家(MoE)をベースとしたモデル融合を用いて,この問題を実用的でスケーラブルに解決する手法を提案する。
特殊な単一タスクモデルの重みをまとめることで、MoEモジュールは複数の目的間のトレードオフを効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-06-14T07:16:18Z) - Multi-Objective Optimization Using Adaptive Distributed Reinforcement Learning [8.471466670802815]
本稿では,多目的・マルチエージェント強化学習(MARL)アルゴリズムを提案する。
我々はエッジクラウドコンピューティングを用いたITS環境でアルゴリズムをテストする。
また,本アルゴリズムは,モジュール化および非同期オンライントレーニング手法により,様々な実用上の問題にも対処する。
論文 参考訳(メタデータ) (2024-03-13T18:05:16Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
我々はtextttMEX というオンライン強化学習(オンラインRL)フレームワークを提案する。
textttMEXは、自動的に探索エクスプロイトのバランスをとりながら、見積もりと計画コンポーネントを統合する。
様々な MuJoCo 環境では,ベースラインを安定的なマージンで上回り,十分な報酬を得られる。
論文 参考訳(メタデータ) (2023-05-29T17:25:26Z) - PC-MLP: Model-based Reinforcement Learning with Policy Cover Guided
Exploration [15.173628100049129]
本研究では,カーネル化レギュレータ(KNR)と線形マルコフ決定過程(MDP)のモデルベースアルゴリズムについて検討する。
両方のモデルに対して、我々のアルゴリズムはサンプルの複雑さを保証し、プランニングオラクルへのアクセスのみを使用する。
また,提案手法は報酬のない探索を効率的に行うことができる。
論文 参考訳(メタデータ) (2021-07-15T15:49:30Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
モデルに依存しないメタラーニング (MAML) が人気のある研究分野となっている。
既存のMAMLアルゴリズムは、イテレーション毎にメタモデルを更新するためにいくつかのタスクとデータポイントをサンプリングすることで、エピソードのアイデアに依存している。
本稿では,MAMLのメモリベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-09T08:47:58Z) - MAMBPO: Sample-efficient multi-robot reinforcement learning using
learned world models [4.84279798426797]
マルチロボットシステムは、少数の試験で行動を学ぶ強化学習(RL)アルゴリズムの恩恵を受けることができます。
マルチエージェントモデルベースポリシー最適化(MAMBPO)という新しいマルチエージェントモデルベースRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-05T13:37:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。