Generative AI in Higher Education: A Global Perspective of Institutional Adoption Policies and Guidelines
- URL: http://arxiv.org/abs/2405.11800v1
- Date: Mon, 20 May 2024 05:46:38 GMT
- Title: Generative AI in Higher Education: A Global Perspective of Institutional Adoption Policies and Guidelines
- Authors: Yueqiao Jin, Lixiang Yan, Vanessa Echeverria, Dragan Gašević, Roberto Martinez-Maldonado,
- Abstract summary: This study utilizes the Diffusion of Innovations Theory to examine GAI adoption strategies in higher education across 40 universities from six global regions.
The findings reveal a proactive approach by universities towards GAI integration, emphasizing academic integrity, teaching and learning enhancement, and equity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating generative AI (GAI) into higher education is crucial for preparing a future generation of GAI-literate students. Yet a thorough understanding of the global institutional adoption policy remains absent, with most of the prior studies focused on the Global North and the promises and challenges of GAI, lacking a theoretical lens. This study utilizes the Diffusion of Innovations Theory to examine GAI adoption strategies in higher education across 40 universities from six global regions. It explores the characteristics of GAI innovation, including compatibility, trialability, and observability, and analyses the communication channels and roles and responsibilities outlined in university policies and guidelines. The findings reveal a proactive approach by universities towards GAI integration, emphasizing academic integrity, teaching and learning enhancement, and equity. Despite a cautious yet optimistic stance, a comprehensive policy framework is needed to evaluate the impacts of GAI integration and establish effective communication strategies that foster broader stakeholder engagement. The study highlights the importance of clear roles and responsibilities among faculty, students, and administrators for successful GAI integration, supporting a collaborative model for navigating the complexities of GAI in education. This study contributes insights for policymakers in crafting detailed strategies for its integration.
Related papers
- Faculty Perspectives on the Potential of RAG in Computer Science Higher Education [0.0]
We developed Retrieval Augmented Generation (RAG) applications for the two tasks of virtual teaching assistants and teaching aids.
This study is the first to gather faculty feedback on the application of LLM-based RAG in education.
arXiv Detail & Related papers (2024-07-28T14:55:22Z) - Responsible Adoption of Generative AI in Higher Education: Developing a "Points to Consider" Approach Based on Faculty Perspectives [0.0]
This paper proposes an approach to the responsible adoption of generative AI in higher education.
It employs a ''points to consider'' approach that is sensitive to the goals, values, and structural features of higher education.
arXiv Detail & Related papers (2024-06-01T23:25:06Z) - The global landscape of academic guidelines for generative AI and Large Language Models [8.420666056013685]
The integration of Generative Artificial Intelligence (GAI) and Large Language Models (LLMs) in academia has spurred a global discourse on their potential pedagogical benefits and ethical considerations.
Positive reactions highlight some potential, such as collaborative creativity, increased access to education, and empowerment of trainers and trainees.
However, negative reactions raise concerns about ethical complexities, balancing innovation and academic integrity, unequal access, and misinformation risks.
arXiv Detail & Related papers (2024-05-26T15:28:24Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - Socialized Learning: A Survey of the Paradigm Shift for Edge Intelligence in Networked Systems [62.252355444948904]
This paper presents the findings of a literature review on the integration of edge intelligence (EI) and socialized learning (SL)
SL is a learning paradigm predicated on social principles and behaviors, aimed at amplifying the collaborative capacity and collective intelligence of agents.
We elaborate on three integrated components: socialized architecture, socialized training, and socialized inference, analyzing their strengths and weaknesses.
arXiv Detail & Related papers (2024-04-20T11:07:29Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
Strategic reasoning requires understanding and predicting adversary actions in multi-agent settings while adjusting strategies accordingly.
We explore the scopes, applications, methodologies, and evaluation metrics related to strategic reasoning with Large Language Models.
It underscores the importance of strategic reasoning as a critical cognitive capability and offers insights into future research directions and potential improvements.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
We shed light on the intersectional studies of generative AI and adaptive learning.
We argue that this union will contribute significantly to the development of the next-stage learning format in education.
arXiv Detail & Related papers (2024-02-02T23:54:51Z) - Multimodality of AI for Education: Towards Artificial General
Intelligence [14.121655991753483]
multimodal artificial intelligence (AI) approaches are paving the way towards the realization of Artificial General Intelligence (AGI) in educational contexts.
This research delves deeply into the key facets of AGI, including cognitive frameworks, advanced knowledge representation, adaptive learning mechanisms, and the integration of diverse multimodal data sources.
The paper also discusses the implications of multimodal AI's role in education, offering insights into future directions and challenges in AGI development.
arXiv Detail & Related papers (2023-12-10T23:32:55Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
We propose a new task, named Goal-oriented Intelligent Tutoring Systems (GITS)
GITS aims to enable the student's mastery of a designated concept by strategically planning a customized sequence of exercises and assessment.
We propose a novel graph-based reinforcement learning framework, named Planning-Assessment-Interaction (PAI)
arXiv Detail & Related papers (2023-12-03T12:37:16Z) - A Comprehensive AI Policy Education Framework for University Teaching
and Learning [0.0]
This study aims to develop an AI education policy for higher education by examining the perceptions and implications of text generative AI technologies.
Data was collected from 457 students and 180 teachers and staff across various disciplines in Hong Kong universities.
The study proposes an AI Ecological Education Policy Framework to address the multifaceted implications of AI integration in university teaching and learning.
arXiv Detail & Related papers (2023-04-29T15:35:39Z) - Variational Empowerment as Representation Learning for Goal-Based
Reinforcement Learning [114.07623388322048]
We discuss how the standard goal-conditioned RL (GCRL) is encapsulated by the objective variational empowerment.
Our work lays a novel foundation from which to evaluate, analyze, and develop representation learning techniques in goal-based RL.
arXiv Detail & Related papers (2021-06-02T18:12:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.