LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models
- URL: http://arxiv.org/abs/2404.01230v1
- Date: Mon, 1 Apr 2024 16:50:54 GMT
- Title: LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models
- Authors: Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Adrian de Wynter, Yan Xia, Wenshan Wu, Ting Song, Man Lan, Furu Wei,
- Abstract summary: Strategic reasoning requires understanding and predicting adversary actions in multi-agent settings while adjusting strategies accordingly.
We explore the scopes, applications, methodologies, and evaluation metrics related to strategic reasoning with Large Language Models.
It underscores the importance of strategic reasoning as a critical cognitive capability and offers insights into future research directions and potential improvements.
- Score: 75.89014602596673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a comprehensive survey of the current status and opportunities for Large Language Models (LLMs) in strategic reasoning, a sophisticated form of reasoning that necessitates understanding and predicting adversary actions in multi-agent settings while adjusting strategies accordingly. Strategic reasoning is distinguished by its focus on the dynamic and uncertain nature of interactions among multi-agents, where comprehending the environment and anticipating the behavior of others is crucial. We explore the scopes, applications, methodologies, and evaluation metrics related to strategic reasoning with LLMs, highlighting the burgeoning development in this area and the interdisciplinary approaches enhancing their decision-making performance. It aims to systematize and clarify the scattered literature on this subject, providing a systematic review that underscores the importance of strategic reasoning as a critical cognitive capability and offers insights into future research directions and potential improvements.
Related papers
- Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - STRIDE: A Tool-Assisted LLM Agent Framework for Strategic and Interactive Decision-Making [43.734386326024016]
Large Language Models (LLMs) have revolutionized natural language processing, showing remarkable linguistic proficiency and reasoning capabilities.
This paper presents a novel framework equipped with memory and specialized tools to enhance their strategic decision-making capabilities.
arXiv Detail & Related papers (2024-05-25T23:25:10Z) - Puzzle Solving using Reasoning of Large Language Models: A Survey [1.9939549451457024]
This survey examines the capabilities of Large Language Models (LLMs) in puzzle solving.
Our findings highlight the disparity between LLM capabilities and human-like reasoning.
The survey underscores the necessity for novel strategies and richer datasets to advance LLMs' puzzle-solving proficiency.
arXiv Detail & Related papers (2024-02-17T14:19:38Z) - K-Level Reasoning: Establishing Higher Order Beliefs in Large Language Models for Strategic Reasoning [76.3114831562989]
It requires Large Language Model (LLM) agents to adapt their strategies dynamically in multi-agent environments.
We propose a novel framework: "K-Level Reasoning with Large Language Models (K-R)"
arXiv Detail & Related papers (2024-02-02T16:07:05Z) - LLM-SAP: Large Language Models Situational Awareness Based Planning [0.0]
We employ a multi-agent reasoning framework to develop a methodology that anticipates and actively mitigates potential risks.
Our approach diverges from traditional automata theory by incorporating the complexity of human-centric interactions into the planning process.
arXiv Detail & Related papers (2023-12-26T17:19:09Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions.
Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.
arXiv Detail & Related papers (2023-10-24T19:46:04Z) - Enhance Multi-domain Sentiment Analysis of Review Texts through
Prompting Strategies [1.335032286337391]
We formulate the process of prompting for sentiment analysis tasks and introduce two novel strategies tailored for sentiment analysis.
We conduct comparative experiments on three distinct domain datasets to evaluate the effectiveness of the proposed sentiment analysis strategies.
The results demonstrate that the adoption of the proposed prompting strategies leads to a increasing enhancement in sentiment analysis accuracy.
arXiv Detail & Related papers (2023-09-05T08:44:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.