論文の概要: LSEnet: Lorentz Structural Entropy Neural Network for Deep Graph Clustering
- arxiv url: http://arxiv.org/abs/2405.11801v1
- Date: Mon, 20 May 2024 05:46:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 14:03:49.319878
- Title: LSEnet: Lorentz Structural Entropy Neural Network for Deep Graph Clustering
- Title(参考訳): LSEnet:ディープグラフクラスタリングのためのローレンツ構造エントロピーニューラルネットワーク
- Authors: Li Sun, Zhenhao Huang, Hao Peng, Yujie Wang, Chunyang Liu, Philip S. Yu,
- Abstract要約: グラフクラスタリングは機械学習の基本的な問題である。
近年、ディープラーニング手法は最先端の成果を達成しているが、事前に定義されたクラスタ番号なしでは動作できない。
本稿では,グラフ情報理論の新たな視点からこの問題に対処することを提案する。
- 参考スコア(独自算出の注目度): 59.89626219328127
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Graph clustering is a fundamental problem in machine learning. Deep learning methods achieve the state-of-the-art results in recent years, but they still cannot work without predefined cluster numbers. Such limitation motivates us to pose a more challenging problem of graph clustering with unknown cluster number. We propose to address this problem from a fresh perspective of graph information theory (i.e., structural information). In the literature, structural information has not yet been introduced to deep clustering, and its classic definition falls short of discrete formulation and modeling node features. In this work, we first formulate a differentiable structural information (DSI) in the continuous realm, accompanied by several theoretical results. By minimizing DSI, we construct the optimal partitioning tree where densely connected nodes in the graph tend to have the same assignment, revealing the cluster structure. DSI is also theoretically presented as a new graph clustering objective, not requiring the predefined cluster number. Furthermore, we design a neural LSEnet in the Lorentz model of hyperbolic space, where we integrate node features to structural information via manifold-valued graph convolution. Extensive empirical results on real graphs show the superiority of our approach.
- Abstract(参考訳): グラフクラスタリングは機械学習の基本的な問題である。
近年、ディープラーニング手法は最先端の成果を達成しているが、事前に定義されたクラスタ番号なしでは動作できない。
このような制限は、未知のクラスタ数を持つグラフクラスタリングにおいて、より難しい問題を提起する動機となります。
本稿では,グラフ情報理論(構造情報)の新たな視点からこの問題に対処することを提案する。
文献では、構造情報は深層クラスタリングにはまだ導入されておらず、古典的な定義は離散的な定式化やモデル化ノードの特徴に欠ける。
本研究では、まず連続領域における微分可能な構造情報(DSI)を、いくつかの理論的結果とともに定式化する。
DSIを最小化することにより、グラフ内の密結合ノードが同じ割り当てを持つ傾向にある最適なパーティショニングツリーを構築し、クラスタ構造を明らかにする。
DSIはまた、事前に定義されたクラスタ番号を必要としない、新しいグラフクラスタリングの目的として理論的に提示される。
さらに、双曲空間のローレンツモデルにニューラルLSEnetを設計し、多様体値グラフ畳み込みによる構造情報にノード特徴を統合する。
実グラフ上の広範な実験結果は、我々のアプローチの優位性を示している。
関連論文リスト
- Incorporating Higher-order Structural Information for Graph Clustering [6.027366081402081]
グラフ畳み込みネットワーク(GCN)は、ディープクラスタリングの強力なツールとして登場した。
グラフ構造情報をフル活用するための新しいグラフクラスタリングネットワークを提案する。
提案手法は, 各種データセット上での最先端手法よりも優れる。
論文 参考訳(メタデータ) (2024-03-17T04:42:41Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - Redundancy-Free Self-Supervised Relational Learning for Graph Clustering [13.176413653235311]
冗長フリーグラフクラスタリング(R$2$FGC)という,自己教師付き深層グラフクラスタリング手法を提案する。
オートエンコーダとグラフオートエンコーダに基づいて,グローバルビューとローカルビューの両方から属性レベルと構造レベルの関係情報を抽出する。
この実験は,R$2$FGCが最先端のベースラインよりも優れていることを示すために,広く使用されているベンチマークデータセット上で実施されている。
論文 参考訳(メタデータ) (2023-09-09T06:18:50Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Deep Temporal Graph Clustering [77.02070768950145]
深部時間グラフクラスタリング(GC)のための汎用フレームワークを提案する。
GCは、時間グラフの相互作用シーケンスに基づくバッチ処理パターンに適合するディープクラスタリング技術を導入している。
我々のフレームワークは、既存の時間グラフ学習手法の性能を効果的に向上させることができる。
論文 参考訳(メタデータ) (2023-05-18T06:17:50Z) - Semantic Graph Neural Network with Multi-measure Learning for
Semi-supervised Classification [5.000404730573809]
近年,グラフニューラルネットワーク(GNN)が注目されている。
近年の研究では、GNNはグラフの複雑な基盤構造に弱いことが示されている。
半教師付き分類のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-04T06:17:11Z) - Graph Neural Network with Curriculum Learning for Imbalanced Node
Classification [21.085314408929058]
グラフニューラルネットワーク(GNN)は,ノード分類などのグラフベースの学習タスクの新興技術である。
本研究では,ノードラベルの不均衡に対するGNNの脆弱性を明らかにする。
本稿では,2つのモジュールからなるカリキュラム学習(GNN-CL)を備えたグラフニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-05T10:46:11Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
教師なしグラフ表現学習は、教師なしの低次元ノード埋め込みを学習することを目的としている。
本稿では、自己教師付き手法を用いた教師なしグラフ表現学習のための新しいクラスタ対応グラフニューラルネットワーク(CAGNN)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-03T13:57:18Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
グラフベースのクラスタリングは、クラスタリング領域において重要な役割を果たす。
グラフ畳み込みニューラルネットワークに関する最近の研究は、グラフ型データにおいて驚くべき成功を収めている。
本稿では,グラフの生成的視点に応じて適応的にグラフを構成する汎用データクラスタリングのためのグラフ自動エンコーダを提案する。
論文 参考訳(メタデータ) (2020-02-20T10:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。