論文の概要: Climatic & Anthropogenic Hazards to the Nasca World Heritage: Application of Remote Sensing, AI, and Flood Modelling
- arxiv url: http://arxiv.org/abs/2405.11814v1
- Date: Mon, 20 May 2024 06:21:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 14:03:49.304106
- Title: Climatic & Anthropogenic Hazards to the Nasca World Heritage: Application of Remote Sensing, AI, and Flood Modelling
- Title(参考訳): ナスカ世界遺産へのクリマティック・人類起源のハザード:リモートセンシング、AI、洪水モデルの適用
- Authors: Masato Sakai, Marcus Freitag, Akihisa Sakurai, Conrad M Albrecht, Hendrik F Hamann,
- Abstract要約: フラッシュフルートのようなより頻繁な天候は、ナスカの人工物を脅かす。
我々は、(サブ)メートルスケールに基づく流出モデル、LiDAR由来のデジタル標高データにより、浸食の危険があるAI検出ジオグリフをハイライトできることを実証した。
我々は、パンアメリカン・ハイウェイに近い有名な「リザード」、「ツリー」および「ハンド」ジオグリフを守るために緩和策を推奨する。
- 参考スコア(独自算出の注目度): 0.2995925627097048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Preservation of the Nasca geoglyphs at the UNESCO World Heritage Site in Peru is urgent as natural and human impact accelerates. More frequent weather extremes such as flashfloods threaten Nasca artifacts. We demonstrate that runoff models based on (sub-)meter scale, LiDAR-derived digital elevation data can highlight AI-detected geoglyphs that are in danger of erosion. We recommend measures of mitigation to protect the famous "lizard", "tree", and "hand" geoglyphs located close by, or even cut by the Pan-American Highway.
- Abstract(参考訳): ペルーのユネスコの世界遺産にあるナスカ地形の保存は、自然と人間の影響が加速するにつれて急務である。
フラッシュフルートのようなより頻繁な天候は、ナスカの人工物を脅かす。
我々は、(サブ)メートルスケールに基づく流出モデル、LiDAR由来のデジタル標高データにより、浸食の危険があるAI検出ジオグリフをハイライトできることを実証した。
我々は、パンアメリカン・ハイウェイに近い有名な「リザード」、「ツリー」および「ハンド」ジオグリフを守るために緩和策を推奨する。
関連論文リスト
- PEACE: Empowering Geologic Map Holistic Understanding with MLLMs [64.58959634712215]
地質図は地質学の基本的な図として、地球の地下と地表の構造と構成に関する重要な洞察を提供する。
その重要性にもかかわらず、現在のマルチモーダル大言語モデル(MLLM)は地質図の理解に乏しいことが多い。
このギャップを定量化するために、地質地図理解においてMLLMを評価するための最初のベンチマークであるGeoMap-Benchを構築した。
論文 参考訳(メタデータ) (2025-01-10T18:59:42Z) - Mapping Global Floods with 10 Years of Satellite Radar Data [0.0]
本研究では,Sentinel-1 Synthetic Aperture Radar (SAR)衛星画像の雲透過性を利用した新しい深層学習洪水検出モデルを提案する。
我々は、クラウドカバレッジの影響を受けない予測を備えた、ユニークな、縦断的なグローバルな洪水範囲データセットを作成します。
我々は,エチオピアの歴史的洪水発生地域を特定し,2024年5月のケニアの洪水時のリアルタイム災害対応能力を示す。
論文 参考訳(メタデータ) (2024-11-03T02:44:32Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
様々な動物が環境の手がかりを使って正確なナビゲーションをしている。
動物航法にインスパイアされたこの研究は、長距離水中航法のためのバイオニックでデータ駆動のアプローチを提案する。
提案手法では,GPSシステムや地理地図を必要とせず,測地データを用いてナビゲーションを行う。
論文 参考訳(メタデータ) (2024-02-06T13:20:56Z) - Deep Semantic Model Fusion for Ancient Agricultural Terrace Detection [17.102691286544136]
本稿では,古代農耕段丘検出のための深部セマンティックモデル融合法を提案する。
提案手法は国際AI考古学チャレンジで優勝した。
論文 参考訳(メタデータ) (2023-08-04T09:42:14Z) - Toward Foundation Models for Earth Monitoring: Generalizable Deep
Learning Models for Natural Hazard Segmentation [0.47725505365135473]
自然災害のリアルタイムマッピングは、災害救済、リスク管理、政府の政策決定の伝達に最優先される。
リアルタイムに近いマッピングを実現するための最近の手法は、ディープラーニング(DL)をますます活用している。
本研究では,適切なプレタスクの事前学習に基づいて,DL自然災害マッパーの一般化可能性を大幅に向上させる手法を提案する。
論文 参考訳(メタデータ) (2023-01-23T08:35:00Z) - Generating Physically-Consistent Satellite Imagery for Climate Visualizations [53.61991820941501]
我々は,将来的な洪水や森林再生イベントの合成衛星画像を作成するために,生成的敵ネットワークを訓練する。
純粋なディープラーニングベースのモデルでは、洪水の可視化を生成することができるが、洪水の影響を受けない場所では幻覚的な洪水が発生する。
我々は,地球観測におけるセグメンテーションガイドによる画像と画像の変換のためのコードとデータセットを公開している。
論文 参考訳(メタデータ) (2021-04-10T15:00:15Z) - Machine Learning for Glacier Monitoring in the Hindu Kush Himalaya [54.12023102155757]
氷河マッピングは、hkh領域における生態モニタリングの鍵となる。
気候変動は、氷河生態系の健康に依存している個人にリスクを与える。
本稿では,氷河に着目した環境モニタリングを支援する機械学習手法を提案する。
論文 参考訳(メタデータ) (2020-12-09T12:48:06Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
我々は,現在および将来の沿岸洪水の衛星画像を生成する深層学習パイプラインを構築した。
物理に基づく洪水図と比較して画像を評価することにより,提案手法は物理的一貫性とフォトリアリズムの両方において,ベースラインモデルよりも優れていることがわかった。
この研究は沿岸の洪水の可視化に焦点が当てられているが、気候変動が地球をどう形作るかのグローバルな可視化を作成することを想定している。
論文 参考訳(メタデータ) (2020-10-16T02:15:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。