論文の概要: Improving the Explain-Any-Concept by Introducing Nonlinearity to the Trainable Surrogate Model
- arxiv url: http://arxiv.org/abs/2405.11837v1
- Date: Mon, 20 May 2024 07:25:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 13:53:58.482452
- Title: Improving the Explain-Any-Concept by Introducing Nonlinearity to the Trainable Surrogate Model
- Title(参考訳): トレーニング可能なサロゲートモデルへの非線形性の導入による説明音声概念の改善
- Authors: Mounes Zaval, Sedat Ozer,
- Abstract要約: EAC(Explain Any Concept)モデルは、意思決定を説明するフレキシブルな方法です。
EACモデルは、ターゲットモデルをシミュレートする訓練可能な1つの線形層を持つ代理モデルを用いている。
元のサロゲートモデルに追加の非線形層を導入することで、ERCモデルの性能を向上させることができることを示す。
- 参考スコア(独自算出の注目度): 4.6040036610482655
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the evolving field of Explainable AI (XAI), interpreting the decisions of deep neural networks (DNNs) in computer vision tasks is an important process. While pixel-based XAI methods focus on identifying significant pixels, existing concept-based XAI methods use pre-defined or human-annotated concepts. The recently proposed Segment Anything Model (SAM) achieved a significant step forward to prepare automatic concept sets via comprehensive instance segmentation. Building upon this, the Explain Any Concept (EAC) model emerged as a flexible method for explaining DNN decisions. EAC model is based on using a surrogate model which has one trainable linear layer to simulate the target model. In this paper, by introducing an additional nonlinear layer to the original surrogate model, we show that we can improve the performance of the EAC model. We compare our proposed approach to the original EAC model and report improvements obtained on both ImageNet and MS COCO datasets.
- Abstract(参考訳): 説明可能なAI(XAI)の進化する分野では、コンピュータビジョンタスクにおけるディープニューラルネットワーク(DNN)の決定を解釈することが重要なプロセスである。
ピクセルベースのXAIメソッドは重要なピクセルの識別に重点を置いているが、既存のコンセプトベースのXAIメソッドでは事前に定義された概念や人間による注釈が付けられている。
最近提案されたSegment Anything Model (SAM)は、包括的なインスタンスセグメンテーションを通じて自動概念セットを作成するための大きな一歩を踏み出した。
これに基づいて、DNN決定を説明するフレキシブルな方法として、EAC(Explain Any Concept)モデルが登場した。
EACモデルは、ターゲットモデルをシミュレートする訓練可能な1つの線形層を持つ代理モデルを用いている。
本稿では,元のサロゲートモデルに新たな非線形層を導入することにより,ERCモデルの性能を向上させることができることを示す。
提案手法を元のERCモデルと比較し,ImageNetおよびMS COCOデータセットで得られた改善点を報告する。
関連論文リスト
- Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - Jointly Training and Pruning CNNs via Learnable Agent Guidance and Alignment [69.33930972652594]
本稿では,CNNモデルの重みと構造的プーン構造を協調的に学習するための新しい構造的プルーニング手法を提案する。
本手法の中核となる要素は強化学習(RL)エージェントであり,その動作がCNNモデルの階層のプルーニング比を決定する。
我々は,モデルの重みとエージェントのポリシーを反復的に訓練し,共同訓練と刈り取りを行う。
論文 参考訳(メタデータ) (2024-03-28T15:22:29Z) - SETA: Semantic-Aware Token Augmentation for Domain Generalization [27.301312891532277]
ドメイン一般化(DG)は、ターゲットドメインにアクセスすることなく、ドメインシフトに対するモデルを強化することを目的としている。
トークンベースのモデルに対する従来のCNNベースの拡張手法は、全体的な形状情報を学ぶためのモデルへのインセンティブが欠如しているため、亜最適である。
本研究では,グローバルな形状を保ちながら局所的なエッジキューを摂動することで特徴を変換するセマンティック・アウェア・トークン拡張(SETA)法を提案する。
論文 参考訳(メタデータ) (2024-03-18T13:50:35Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Understanding the (Extra-)Ordinary: Validating Deep Model Decisions with Prototypical Concept-based Explanations [13.60538902487872]
本稿では, 実例的(地域的)かつクラス的(グローバル的)な意思決定戦略をプロトタイプを通じて伝達する, ポストホックなコンセプトベースXAIフレームワークを提案する。
我々は,3つのデータセットにまたがるアウト・オブ・ディストリビューション・サンプル,突発的なモデル行動,データ品質問題同定におけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-11-28T10:53:26Z) - Learning Transferable Conceptual Prototypes for Interpretable
Unsupervised Domain Adaptation [79.22678026708134]
本稿では,Transferable Prototype Learning (TCPL) という,本質的に解釈可能な手法を提案する。
この目的を達成するために、ソースドメインからターゲットドメインにカテゴリの基本概念を転送する階層的なプロトタイプモジュールを設計し、基礎となる推論プロセスを説明するためにドメイン共有プロトタイプを学習する。
総合的な実験により,提案手法は有効かつ直感的な説明を提供するだけでなく,従来の最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-10-12T06:36:41Z) - Explain Any Concept: Segment Anything Meets Concept-Based Explanation [11.433807960637685]
Segment Anything Model (SAM)は、正確で包括的なインスタンスセグメンテーションを実行するための強力なフレームワークとして実証されている。
我々は、効果的で柔軟な概念に基づく説明方法、すなわち Explain Any Concept (EAC) を提供する。
そこで我々は,Surrogateモデルによる効率的な説明を可能にする軽量なPIE方式を提案する。
論文 参考訳(メタデータ) (2023-05-17T15:26:51Z) - Optimizing Explanations by Network Canonization and Hyperparameter
Search [74.76732413972005]
ルールベースで修正されたバックプロパゲーションXAIアプローチは、モダンなモデルアーキテクチャに適用される場合、しばしば課題に直面します。
モデルカノン化は、基礎となる機能を変更することなく問題のあるコンポーネントを無視してモデルを再構成するプロセスである。
本研究では、一般的なディープニューラルネットワークアーキテクチャに適用可能な、現在関連するモデルブロックのカノン化を提案する。
論文 参考訳(メタデータ) (2022-11-30T17:17:55Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - Navigating Neural Space: Revisiting Concept Activation Vectors to
Overcome Directional Divergence [14.071950294953005]
概念活性化ベクトル (Concept Activation Vectors, CAV) は、潜在空間における人間の理解可能な概念をモデル化するための一般的なツールである。
本稿では、そのような分離性指向の解が、概念の方向性を正確にモデル化する実際の目標から逸脱する可能性があることを示す。
パターンベースのCAVを導入し、概念信号のみに着目し、より正確な概念指示を提供する。
論文 参考訳(メタデータ) (2022-02-07T19:40:20Z) - Explaining Convolutional Neural Networks through Attribution-Based Input
Sampling and Block-Wise Feature Aggregation [22.688772441351308]
クラスアクティベーションマッピングとランダムな入力サンプリングに基づく手法が広く普及している。
しかし、帰属法は、その説明力を制限した解像度とぼやけた説明地図を提供する。
本研究では、帰属型入力サンプリング技術に基づいて、モデルの複数の層から可視化マップを収集する。
また,CNNモデル全体に適用可能な層選択戦略を提案する。
論文 参考訳(メタデータ) (2020-10-01T20:27:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。