EPPS: Advanced Polyp Segmentation via Edge Information Injection and Selective Feature Decoupling
- URL: http://arxiv.org/abs/2405.11846v2
- Date: Mon, 27 May 2024 02:47:27 GMT
- Title: EPPS: Advanced Polyp Segmentation via Edge Information Injection and Selective Feature Decoupling
- Authors: Mengqi Lei, Xin Wang,
- Abstract summary: We propose a novel model named Edge-Prioritized Polyp (EPPS)
Specifically, we incorporate an Edge Mapping Engine (EME) aimed at accurately extracting the edges of polyps.
We also introduce a component called Selective Feature Decoupler (SFD) to suppress the influence of noise and extraneous features on the model.
- Score: 5.453850739960517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate segmentation of polyps in colonoscopy images is essential for early-stage diagnosis and management of colorectal cancer. Despite advancements in deep learning for polyp segmentation, enduring limitations persist. The edges of polyps are typically ambiguous, making them difficult to discern from the background, and the model performance is often compromised by the influence of irrelevant or unimportant features. To alleviate these challenges, we propose a novel model named Edge-Prioritized Polyp Segmentation (EPPS). Specifically, we incorporate an Edge Mapping Engine (EME) aimed at accurately extracting the edges of polyps. Subsequently, an Edge Information Injector (EII) is devised to augment the mask prediction by injecting the captured edge information into Decoder blocks. Furthermore, we introduce a component called Selective Feature Decoupler (SFD) to suppress the influence of noise and extraneous features on the model. Extensive experiments on 3 widely used polyp segmentation benchmarks demonstrate the superior performance of our method compared with other state-of-the-art approaches.
Related papers
- ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
The Segment Anything Model (SAM) has introduced unprecedented potential for polyp segmentation.
SAM's Transformer-based structure prioritizes global and low-frequency information.
CFA integrates a trainable CNN encoder branch with a frozen ViT encoder, enabling the integration of domain-specific knowledge.
arXiv Detail & Related papers (2024-06-30T14:55:32Z) - ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic
Polyp Detection [88.4359020192429]
Existing methods either involve computationally expensive context aggregation or lack prior modeling of polyps, resulting in poor performance in challenging cases.
In this paper, we propose the Enhanced CenterNet with Contrastive Learning (ECC-PolypDet), a two-stage training & end-to-end inference framework.
Box-assisted Contrastive Learning (BCL) during training to minimize the intra-class difference and maximize the inter-class difference between foreground polyps and backgrounds, enabling our model to capture concealed polyps.
In the fine-tuning stage, we introduce the IoU-guided Sample Re-weighting
arXiv Detail & Related papers (2024-01-10T07:03:41Z) - Edge-aware Feature Aggregation Network for Polyp Segmentation [40.3881565207086]
In this study, we present a novel Edge-aware Feature Aggregation Network (EFA-Net) for polyp segmentation.
EFA-Net can fully make use of cross-level and multi-scale features to enhance the performance of polyp segmentation.
Experimental results on five widely adopted colonoscopy datasets show that our EFA-Net outperforms state-of-the-art polyp segmentation methods in terms of generalization and effectiveness.
arXiv Detail & Related papers (2023-09-19T11:09:38Z) - SegT: A Novel Separated Edge-guidance Transformer Network for Polyp
Segmentation [10.144870911523622]
We propose a novel separated edge-guidance transformer (SegT) network that aims to build an effective polyp segmentation model.
A transformer encoder that learns a more robust representation than existing CNN-based approaches was specifically applied.
To evaluate the effectiveness of SegT, we conducted experiments with five challenging public datasets.
arXiv Detail & Related papers (2023-06-19T08:32:05Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - BoxPolyp:Boost Generalized Polyp Segmentation Using Extra Coarse
Bounding Box Annotations [79.17754846553866]
We propose a boosted BoxPolyp model to make full use of both accurate mask and extra coarse box annotations.
In practice, box annotations are applied to alleviate the over-fitting issue of previous polyp segmentation models.
Our proposed model outperforms previous state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2022-12-07T07:45:50Z) - Stepwise Feature Fusion: Local Guides Global [14.394421688712052]
We propose a new State-Of-The-Art model for medical image segmentation, the SSFormer, which uses a pyramid Transformer encoder to improve the generalization ability of models.
Our proposed Progressive Locality Decoder can be adapted to the pyramid Transformer backbone to emphasize local features and attention dispersion.
arXiv Detail & Related papers (2022-03-07T10:36:38Z) - Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers [124.01928050651466]
We propose a new type of polyp segmentation method, named Polyp-PVT.
The proposed model, named Polyp-PVT, effectively suppresses noises in the features and significantly improves their expressive capabilities.
arXiv Detail & Related papers (2021-08-16T07:09:06Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.