Towards Graph Contrastive Learning: A Survey and Beyond
- URL: http://arxiv.org/abs/2405.11868v1
- Date: Mon, 20 May 2024 08:19:10 GMT
- Title: Towards Graph Contrastive Learning: A Survey and Beyond
- Authors: Wei Ju, Yifan Wang, Yifang Qin, Zhengyang Mao, Zhiping Xiao, Junyu Luo, Junwei Yang, Yiyang Gu, Dongjie Wang, Qingqing Long, Siyu Yi, Xiao Luo, Ming Zhang,
- Abstract summary: Self-supervised learning (SSL) on graphs has gained increasing attention and has made significant progress.
SSL enables machine learning models to produce informative representations from unlabeled graph data.
Graph Contrastive Learning (GCL) has not been thoroughly investigated in the existing literature.
- Score: 23.109430624817637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, deep learning on graphs has achieved remarkable success in various domains. However, the reliance on annotated graph data remains a significant bottleneck due to its prohibitive cost and time-intensive nature. To address this challenge, self-supervised learning (SSL) on graphs has gained increasing attention and has made significant progress. SSL enables machine learning models to produce informative representations from unlabeled graph data, reducing the reliance on expensive labeled data. While SSL on graphs has witnessed widespread adoption, one critical component, Graph Contrastive Learning (GCL), has not been thoroughly investigated in the existing literature. Thus, this survey aims to fill this gap by offering a dedicated survey on GCL. We provide a comprehensive overview of the fundamental principles of GCL, including data augmentation strategies, contrastive modes, and contrastive optimization objectives. Furthermore, we explore the extensions of GCL to other aspects of data-efficient graph learning, such as weakly supervised learning, transfer learning, and related scenarios. We also discuss practical applications spanning domains such as drug discovery, genomics analysis, recommender systems, and finally outline the challenges and potential future directions in this field.
Related papers
- Continual Learning on Graphs: Challenges, Solutions, and Opportunities [72.7886669278433]
We provide a comprehensive review of existing continual graph learning (CGL) algorithms.
We compare methods with traditional continual learning techniques and analyze the applicability of the traditional continual learning techniques to forgetting tasks.
We will maintain an up-to-date repository featuring a comprehensive list of accessible algorithms.
arXiv Detail & Related papers (2024-02-18T12:24:45Z) - A Survey of Data-Efficient Graph Learning [16.053913182723143]
We introduce a novel concept of Data-Efficient Graph Learning (DEGL) as a research frontier.
We systematically review recent advances on several key aspects, including self-supervised graph learning, semi-supervised graph learning, and few-shot graph learning.
arXiv Detail & Related papers (2024-02-01T09:28:48Z) - Continual Graph Learning: A Survey [4.618696834991205]
Research on continual learning (CL) mainly focuses on data represented in the Euclidean space.
Most graph learning models are tailored for static graphs.
Catastrophic forgetting also emerges in graph learning models when being trained incrementally.
arXiv Detail & Related papers (2023-01-28T15:42:49Z) - GraphMAE: Self-Supervised Masked Graph Autoencoders [52.06140191214428]
We present a masked graph autoencoder GraphMAE that mitigates issues for generative self-supervised graph learning.
We conduct extensive experiments on 21 public datasets for three different graph learning tasks.
The results manifest that GraphMAE--a simple graph autoencoder with our careful designs--can consistently generate outperformance over both contrastive and generative state-of-the-art baselines.
arXiv Detail & Related papers (2022-05-22T11:57:08Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
We first propose a taxonomy for graph data augmentation and then provide a structured review by categorizing the related work based on the augmented information modalities.
Focusing on the two challenging problems in DGL (i.e., optimal graph learning and low-resource graph learning), we also discuss and review the existing learning paradigms which are based on graph data augmentation.
arXiv Detail & Related papers (2022-02-16T18:30:33Z) - Self-supervised on Graphs: Contrastive, Generative,or Predictive [25.679620842010422]
Self-supervised learning (SSL) is emerging as a new paradigm for extracting informative knowledge through well-designed pretext tasks.
We divide existing graph SSL methods into three categories: contrastive, generative, and predictive.
We also summarize the commonly used datasets, evaluation metrics, downstream tasks, and open-source implementations of various algorithms.
arXiv Detail & Related papers (2021-05-16T03:30:03Z) - Graph Self-Supervised Learning: A Survey [73.86209411547183]
Self-supervised learning (SSL) has become a promising and trending learning paradigm for graph data.
We present a timely and comprehensive review of the existing approaches which employ SSL techniques for graph data.
arXiv Detail & Related papers (2021-02-27T03:04:21Z) - Graph-based Semi-supervised Learning: A Comprehensive Review [51.26862262550445]
Semi-supervised learning (SSL) has tremendous value in practice due to its ability to utilize both labeled data and unlabelled data.
An important class of SSL methods is to naturally represent data as graphs, which corresponds to graph-based semi-supervised learning (GSSL) methods.
GSSL methods have demonstrated their advantages in various domains due to their uniqueness of structure, the universality of applications, and their scalability to large scale data.
arXiv Detail & Related papers (2021-02-26T05:11:09Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.