Using Large Language Models to Tackle Fundamental Challenges in Graph Learning: A Comprehensive Survey
- URL: http://arxiv.org/abs/2505.18475v1
- Date: Sat, 24 May 2025 02:38:14 GMT
- Title: Using Large Language Models to Tackle Fundamental Challenges in Graph Learning: A Comprehensive Survey
- Authors: Mengran Li, Pengyu Zhang, Wenbin Xing, Yijia Zheng, Klim Zaporojets, Junzhou Chen, Ronghui Zhang, Yong Zhang, Siyuan Gong, Jia Hu, Xiaolei Ma, Zhiyuan Liu, Paul Groth, Marcel Worring,
- Abstract summary: Real-world graph data often violates the assumptions of traditional graph learning methods.<n>Recent advances in Large Language Models (LLMs) offer the potential to tackle these challenges.
- Score: 38.05140658792701
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphs are a widely used paradigm for representing non-Euclidean data, with applications ranging from social network analysis to biomolecular prediction. Conventional graph learning approaches typically rely on fixed structural assumptions or fully observed data, limiting their effectiveness in more complex, noisy, or evolving settings. Consequently, real-world graph data often violates the assumptions of traditional graph learning methods, in particular, it leads to four fundamental challenges: (1) Incompleteness, real-world graphs have missing nodes, edges, or attributes; (2) Imbalance, the distribution of the labels of nodes or edges and their structures for real-world graphs are highly skewed; (3) Cross-domain Heterogeneity, graphs from different domains exhibit incompatible feature spaces or structural patterns; and (4) Dynamic Instability, graphs evolve over time in unpredictable ways. Recent advances in Large Language Models (LLMs) offer the potential to tackle these challenges by leveraging rich semantic reasoning and external knowledge. This survey provides a comprehensive review of how LLMs can be integrated with graph learning to address the aforementioned challenges. For each challenge, we review both traditional solutions and modern LLM-driven approaches, highlighting how LLMs contribute unique advantages. Finally, we discuss open research questions and promising future directions in this emerging interdisciplinary field. To support further exploration, we have curated a repository of recent advances on graph learning challenges: https://github.com/limengran98/Awesome-Literature-Graph-Learning-Challenges.
Related papers
- Towards Data-centric Machine Learning on Directed Graphs: a Survey [23.498557237805414]
We introduce a novel taxonomy for existing studies of directed graph learning.<n>We re-examine these methods from the data-centric perspective, with an emphasis on understanding and improving data representation.<n>We identify key opportunities and challenges within the field, offering insights that can guide future research and development in directed graph learning.
arXiv Detail & Related papers (2024-11-28T06:09:12Z) - Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability.
This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications.
arXiv Detail & Related papers (2024-08-26T06:36:42Z) - A Survey of Large Language Models for Graphs [21.54279919476072]
We conduct an in-depth review of the latest state-of-the-art Large Language Models applied in graph learning.
We introduce a novel taxonomy to categorize existing methods based on their framework design.
We explore the strengths and limitations of each framework, and emphasize potential avenues for future research.
arXiv Detail & Related papers (2024-05-10T18:05:37Z) - OpenGraph: Towards Open Graph Foundation Models [20.401374302429627]
Graph Neural Networks (GNNs) have emerged as promising techniques for encoding structural information.
Key challenge remains: the difficulty of generalizing to unseen graph data with different properties.
We propose a novel graph foundation model, called OpenGraph, to address this challenge.
arXiv Detail & Related papers (2024-03-02T08:05:03Z) - Continual Learning on Graphs: Challenges, Solutions, and Opportunities [72.7886669278433]
We provide a comprehensive review of existing continual graph learning (CGL) algorithms.
We compare methods with traditional continual learning techniques and analyze the applicability of the traditional continual learning techniques to forgetting tasks.
We will maintain an up-to-date repository featuring a comprehensive list of accessible algorithms.
arXiv Detail & Related papers (2024-02-18T12:24:45Z) - A Survey of Data-Efficient Graph Learning [16.053913182723143]
We introduce a novel concept of Data-Efficient Graph Learning (DEGL) as a research frontier.
We systematically review recent advances on several key aspects, including self-supervised graph learning, semi-supervised graph learning, and few-shot graph learning.
arXiv Detail & Related papers (2024-02-01T09:28:48Z) - When Graph Data Meets Multimodal: A New Paradigm for Graph Understanding
and Reasoning [54.84870836443311]
The paper presents a new paradigm for understanding and reasoning about graph data by integrating image encoding and multimodal technologies.
This approach enables the comprehension of graph data through an instruction-response format, utilizing GPT-4V's advanced capabilities.
The study evaluates this paradigm on various graph types, highlighting the model's strengths and weaknesses, particularly in Chinese OCR performance and complex reasoning tasks.
arXiv Detail & Related papers (2023-12-16T08:14:11Z) - A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and
Future Directions [64.84521350148513]
Graphs represent interconnected structures prevalent in a myriad of real-world scenarios.
Effective graph analytics, such as graph learning methods, enables users to gain profound insights from graph data.
However, these methods often suffer from data imbalance, a common issue in graph data where certain segments possess abundant data while others are scarce.
This necessitates the emerging field of imbalanced learning on graphs, which aims to correct these data distribution skews for more accurate and representative learning outcomes.
arXiv Detail & Related papers (2023-08-26T09:11:44Z) - Continual Graph Learning: A Survey [4.618696834991205]
Research on continual learning (CL) mainly focuses on data represented in the Euclidean space.
Most graph learning models are tailored for static graphs.
Catastrophic forgetting also emerges in graph learning models when being trained incrementally.
arXiv Detail & Related papers (2023-01-28T15:42:49Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Hyperbolic Graph Learning: A Comprehensive Review [56.53820115624101]
This survey paper provides a comprehensive review of the rapidly evolving field of Hyperbolic Graph Learning (HGL)<n>We systematically categorize and analyze existing methods dividing them into (1) hyperbolic graph embedding-based techniques, (2) graph neural network-based hyperbolic models, and (3) emerging paradigms.<n>We extensively discuss diverse applications of HGL across multiple domains, including recommender systems, knowledge graphs, bioinformatics, and other relevant scenarios.
arXiv Detail & Related papers (2022-02-28T15:08:48Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
We first propose a taxonomy for graph data augmentation and then provide a structured review by categorizing the related work based on the augmented information modalities.
Focusing on the two challenging problems in DGL (i.e., optimal graph learning and low-resource graph learning), we also discuss and review the existing learning paradigms which are based on graph data augmentation.
arXiv Detail & Related papers (2022-02-16T18:30:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.