Graph Self-Supervised Learning: A Survey
- URL: http://arxiv.org/abs/2103.00111v1
- Date: Sat, 27 Feb 2021 03:04:21 GMT
- Title: Graph Self-Supervised Learning: A Survey
- Authors: Yixin Liu, Shirui Pan, Ming Jin, Chuan Zhou, Feng Xia, Philip S. Yu
- Abstract summary: Self-supervised learning (SSL) has become a promising and trending learning paradigm for graph data.
We present a timely and comprehensive review of the existing approaches which employ SSL techniques for graph data.
- Score: 73.86209411547183
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning on graphs has attracted significant interest recently. However,
most of the works have focused on (semi-) supervised learning, resulting in
shortcomings including heavy label reliance, poor generalization, and weak
robustness. To address these issues, self-supervised learning (SSL), which
extracts informative knowledge through well-designed pretext tasks without
relying on manual labels, has become a promising and trending learning paradigm
for graph data. Different from other domains like computer vision/natural
language processing, SSL on graphs has an exclusive background, design ideas,
and taxonomies. Under the umbrella of graph self-supervised learning, we
present a timely and comprehensive review of the existing approaches which
employ SSL techniques for graph data. We divide these into four categories
according to the design of their pretext tasks. We further discuss the
remaining challenges and potential future directions in this research field.
Related papers
- Towards Graph Contrastive Learning: A Survey and Beyond [23.109430624817637]
Self-supervised learning (SSL) on graphs has gained increasing attention and has made significant progress.
SSL enables machine learning models to produce informative representations from unlabeled graph data.
Graph Contrastive Learning (GCL) has not been thoroughly investigated in the existing literature.
arXiv Detail & Related papers (2024-05-20T08:19:10Z) - Continual Learning on Graphs: Challenges, Solutions, and Opportunities [72.7886669278433]
We provide a comprehensive review of existing continual graph learning (CGL) algorithms.
We compare methods with traditional continual learning techniques and analyze the applicability of the traditional continual learning techniques to forgetting tasks.
We will maintain an up-to-date repository featuring a comprehensive list of accessible algorithms.
arXiv Detail & Related papers (2024-02-18T12:24:45Z) - A Survey of Data-Efficient Graph Learning [16.053913182723143]
We introduce a novel concept of Data-Efficient Graph Learning (DEGL) as a research frontier.
We systematically review recent advances on several key aspects, including self-supervised graph learning, semi-supervised graph learning, and few-shot graph learning.
arXiv Detail & Related papers (2024-02-01T09:28:48Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Graph Learning and Its Advancements on Large Language Models: A Holistic Survey [37.01696685233113]
This survey focuses on the most recent advancements in integrating graph learning with pre-trained language models.
We provide a holistic review that analyzes current works from the perspective of graph structure, and discusses the latest applications, trends, and challenges in graph learning.
arXiv Detail & Related papers (2022-12-17T22:05:07Z) - GraphMAE: Self-Supervised Masked Graph Autoencoders [52.06140191214428]
We present a masked graph autoencoder GraphMAE that mitigates issues for generative self-supervised graph learning.
We conduct extensive experiments on 21 public datasets for three different graph learning tasks.
The results manifest that GraphMAE--a simple graph autoencoder with our careful designs--can consistently generate outperformance over both contrastive and generative state-of-the-art baselines.
arXiv Detail & Related papers (2022-05-22T11:57:08Z) - Self-supervised on Graphs: Contrastive, Generative,or Predictive [25.679620842010422]
Self-supervised learning (SSL) is emerging as a new paradigm for extracting informative knowledge through well-designed pretext tasks.
We divide existing graph SSL methods into three categories: contrastive, generative, and predictive.
We also summarize the commonly used datasets, evaluation metrics, downstream tasks, and open-source implementations of various algorithms.
arXiv Detail & Related papers (2021-05-16T03:30:03Z) - Self-supervised Learning on Graphs: Deep Insights and New Direction [66.78374374440467]
Self-supervised learning (SSL) aims to create domain specific pretext tasks on unlabeled data.
There are increasing interests in generalizing deep learning to the graph domain in the form of graph neural networks (GNNs)
arXiv Detail & Related papers (2020-06-17T20:30:04Z) - A Survey of Adversarial Learning on Graphs [59.21341359399431]
We investigate and summarize the existing works on graph adversarial learning tasks.
Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks.
We emphasize the importance of related evaluation metrics, investigate and summarize them comprehensively.
arXiv Detail & Related papers (2020-03-10T12:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.