論文の概要: Understanding crypter-as-a-service in a popular underground marketplace
- arxiv url: http://arxiv.org/abs/2405.11876v1
- Date: Mon, 20 May 2024 08:35:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 13:44:14.789479
- Title: Understanding crypter-as-a-service in a popular underground marketplace
- Title(参考訳): 人気のある地下市場における暗号通貨・サービスを理解する
- Authors: Alejandro de la Cruz, Sergio Pastrana,
- Abstract要約: Cryptersは、ターゲットバイナリを変換することで、アンチウイルス(AV)アプリケーションからの検出を回避できるソフトウェアの一部です。
シークレット・アズ・ア・サービスモデルは,検出機構の高度化に対応して人気を博している。
本論文は,シークレット・アズ・ア・サービスに特化したオンライン地下市場に関する最初の研究である。
- 参考スコア(独自算出の注目度): 51.328567400947435
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Crypters are pieces of software whose main goal is to transform a target binary so it can avoid detection from Anti Viruses (AVs from now on) applications. They work similar to packers, by taking a malware binary and applying a series of modifications, obfuscations and encryptions to output a binary that evades one or more AVs. The goal is to remain fully undetected, or FUD in the hacking jargon, while maintaining its (often malicious) functionality. In line to the growth of commoditization in cybercrime, the crypter-as-a-service model has gained popularity, in response to the increased sophistication of detection mechanisms. In this business model, customers receive an initial crypter which is soon updated once becomes detected by anti-viruses. This paper provides the first study on an online underground market dedicated to crypter-as-a-service. We compare the most relevant products in sale, analyzing the existent social network on the platform and comparing the different features that they provide. We also conduct an experiment as a case study, to validate the usage of one of the most popular crypters sold in the market, and compare the results before and after crypting binaries (both benign and malware), to show its effectiveness when evading antivirus engines.
- Abstract(参考訳): クリプタ(Crypters)とは、ターゲットバイナリを変換することで、アンチウイルス(AV)アプリケーションからの検出を回避できるソフトウェアである。
マルウェアのバイナリを取得し、一連の修正や難読化、暗号化を適用して、1つ以上のAVを回避するバイナリを出力することで、パッカーと同じような動作を行う。
目標は、(しばしば悪意のある)機能を維持しながら、完全に検出されないまま、ハックされたjargon内のFUDを維持することだ。
サイバー犯罪におけるコモディティ化の進展に伴い,検出機構の高度化に対応して,シークレット・アズ・ア・サービス・モデルが人気を博している。
このビジネスモデルでは、顧客がアンチウイルスによって検出されるとすぐに更新される初期暗号を受信する。
本論文は,シークレット・アズ・ア・サービスに特化したオンライン地下市場に関する最初の研究である。
販売されている最も関連性の高い製品を比較し、プラットフォーム上の既存のソーシャルネットワークを分析し、それらが提供するさまざまな機能を比較します。
事例研究として,市場で販売されている最も人気のある暗号鍵の1つを検証し,バイナリ(良性およびマルウェアの両方)の暗号化前後の結果を比較して,抗ウイルスエンジンの回避効果を示す。
関連論文リスト
- Ransomware Detection Using Federated Learning with Imbalanced Datasets [0.0]
本稿では,データセットの不均衡を軽減するために,重み付きクロスエントロピー損失関数を提案する。
次に、最新の Windows ベースのランサムウェアファミリを用いた静的解析のケースについて、詳細な性能評価研究を行う。
論文 参考訳(メタデータ) (2023-11-13T21:21:39Z) - RansomAI: AI-powered Ransomware for Stealthy Encryption [0.5172201569251684]
RansomAIは、その検出を最小限に抑える最高の暗号化アルゴリズム、レート、期間を学ぶフレームワークである。
Raspberry Pi 4に影響を及ぼすRansomware-PoCの検出を、90%の精度で数分で回避する。
論文 参考訳(メタデータ) (2023-06-27T15:36:12Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Single-Shot Black-Box Adversarial Attacks Against Malware Detectors: A
Causal Language Model Approach [5.2424255020469595]
Adversarial Malware example Generationは、回避可能なマルウェアの変種を生成することを目的としている。
ブラックボックス法はホワイトボックス法よりも注目されている。
本研究では,新しいDLに基づく因果言語モデルにより,単発回避が可能となることを示す。
論文 参考訳(メタデータ) (2021-12-03T05:29:50Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - Check Your Other Door! Establishing Backdoor Attacks in the Frequency
Domain [80.24811082454367]
検出不能で強力なバックドア攻撃を確立するために周波数領域を利用する利点を示す。
また、周波数ベースのバックドア攻撃を成功させる2つの防御方法と、攻撃者がそれらを回避できる可能性を示す。
論文 参考訳(メタデータ) (2021-09-12T12:44:52Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Data Augmentation Based Malware Detection using Convolutional Neural
Networks [0.0]
サイバー攻撃は、サイバー世界におけるマルウェアの増加によって広く見られた。
この種のマルウェアの最も重要な特徴は、あるコンピュータから別のコンピュータへ伝播する際に形を変えることである。
本稿では, 画像拡張強化深部畳み込みニューラルネットワークモデルを用いて, 変成マルウェア環境におけるマルウェア群の検出を実現することを目的とする。
論文 参考訳(メタデータ) (2020-10-05T08:58:07Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z) - MDEA: Malware Detection with Evolutionary Adversarial Learning [16.8615211682877]
MDEA(Adversarial Malware Detection)モデルであるMDEAは、進化的最適化を使用して攻撃サンプルを作成し、ネットワークを回避攻撃に対して堅牢にする。
進化したマルウェアサンプルでモデルを再トレーニングすることで、その性能は大幅に改善される。
論文 参考訳(メタデータ) (2020-02-09T09:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。