論文の概要: Diff-BGM: A Diffusion Model for Video Background Music Generation
- arxiv url: http://arxiv.org/abs/2405.11913v1
- Date: Mon, 20 May 2024 09:48:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 13:34:30.823593
- Title: Diff-BGM: A Diffusion Model for Video Background Music Generation
- Title(参考訳): Diff-BGM:ビデオバックグラウンド音楽生成のための拡散モデル
- Authors: Sizhe Li, Yiming Qin, Minghang Zheng, Xin Jin, Yang Liu,
- Abstract要約: ビデオと音楽に関するマルチモーダル情報を提供するために,詳細なアノテーションとショット検出を備えた高品質な音楽ビデオデータセットを提案する。
次に,音楽の多様性や音楽と映像のアライメントなど,音楽の質を評価するための評価指標を提案する。
Diff-BGMフレームワークは、ビデオの背景音楽を自動的に生成し、生成過程において異なる信号を用いて音楽の異なる側面を制御する。
- 参考スコア(独自算出の注目度): 16.94631443719866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When editing a video, a piece of attractive background music is indispensable. However, video background music generation tasks face several challenges, for example, the lack of suitable training datasets, and the difficulties in flexibly controlling the music generation process and sequentially aligning the video and music. In this work, we first propose a high-quality music-video dataset BGM909 with detailed annotation and shot detection to provide multi-modal information about the video and music. We then present evaluation metrics to assess music quality, including music diversity and alignment between music and video with retrieval precision metrics. Finally, we propose the Diff-BGM framework to automatically generate the background music for a given video, which uses different signals to control different aspects of the music during the generation process, i.e., uses dynamic video features to control music rhythm and semantic features to control the melody and atmosphere. We propose to align the video and music sequentially by introducing a segment-aware cross-attention layer. Experiments verify the effectiveness of our proposed method. The code and models are available at https://github.com/sizhelee/Diff-BGM.
- Abstract(参考訳): ビデオを編集する際には、魅力的な背景音楽が不可欠である。
しかし、ビデオバックグラウンド音楽生成タスクは、適切なトレーニングデータセットの欠如、音楽生成過程を柔軟に制御することの難しさ、ビデオと音楽の逐次的整列化など、いくつかの課題に直面している。
本研究ではまず,ビデオと音楽に関するマルチモーダル情報を提供するための詳細なアノテーションとショット検出機能を備えた高品質な音楽ビデオデータセットBGM909を提案する。
そこで我々は,音楽の多様性や音楽とビデオのアライメントを含む音楽の質を評価するための評価指標を,検索精度で提示する。
最後に,ビデオの背景音楽を自動的に生成するDiff-BGMフレームワークを提案する。このフレームワークは,生成過程における音楽の異なる側面を制御するために異なる信号を使用する。
本稿では,セグメント対応のクロスアテンション層を導入することで,映像と音楽の連続的な調整を提案する。
提案手法の有効性を検証する実験を行った。
コードとモデルはhttps://github.com/sizhelee/Diff-BGMで公開されている。
関連論文リスト
- MuVi: Video-to-Music Generation with Semantic Alignment and Rhythmic Synchronization [52.498942604622165]
本稿では,ビデオコンテンツに合わせた音楽を生成するためのフレームワークであるMuViについて述べる。
MuViは、特別に設計された視覚適応器を通じて映像コンテンツを分析し、文脈的および時間的に関係のある特徴を抽出する。
音声品質と時間同期の両方において, MuVi が優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2024-10-16T18:44:56Z) - VMAS: Video-to-Music Generation via Semantic Alignment in Web Music Videos [32.741262543860934]
ビデオ入力からバックグラウンド音楽を生成する学習フレームワークを提案する。
我々は,新しいセマンティック・ビデオ・ミュージックアライメント・スキームを用いた生成型ビデオ・ミュージック・トランスフォーマーを開発した。
新しい時間的ビデオエンコーダアーキテクチャにより、多くの高密度なサンプルフレームからなる映像を効率的に処理できる。
論文 参考訳(メタデータ) (2024-09-11T17:56:48Z) - VidMuse: A Simple Video-to-Music Generation Framework with Long-Short-Term Modeling [71.01050359126141]
ビデオ入力に対応する音楽を生成するためのフレームワークであるVidMuseを提案する。
VidMuseは、ビデオと音響的、意味的に一致した高忠実な音楽を生成する。
論文 参考訳(メタデータ) (2024-06-06T17:58:11Z) - Video2Music: Suitable Music Generation from Videos using an Affective
Multimodal Transformer model [32.801213106782335]
我々は、提供されたビデオにマッチできる生成型音楽AIフレームワーク、Video2Musicを開発した。
そこで本研究では,映像コンテンツにマッチする楽曲を感情的に生成する手法を提案する。
論文 参考訳(メタデータ) (2023-11-02T03:33:00Z) - GETMusic: Generating Any Music Tracks with a Unified Representation and
Diffusion Framework [58.64512825534638]
シンボリック・ミュージック・ジェネレーションは、ユーザーが音楽を作るのに役立つ音符を作成することを目的としている。
私たちは「GETMusic」と呼ばれるフレームワークを紹介します。「GET'」は「GEnerate Music Tracks」の略です。
GETScoreは、音符をトークンとして表現し、2D構造でトークンを整理する。
提案する表現は,非自己回帰生成モデルと組み合わせて,任意のソース・ターゲットトラックの組み合わせでGETMusicに音楽を生成する。
論文 参考訳(メタデータ) (2023-05-18T09:53:23Z) - V2Meow: Meowing to the Visual Beat via Video-to-Music Generation [47.076283429992664]
V2Meow(V2Meow)は、様々な種類のビデオ入力に対して高品質な音楽オーディオを制作できるビデオ・音楽生成システムである。
ビデオフレームから抽出した訓練済みの汎用視覚特徴を条件づけて、高忠実度オーディオ波形を合成する。
論文 参考訳(メタデータ) (2023-05-11T06:26:41Z) - Video Background Music Generation: Dataset, Method and Evaluation [31.15901120245794]
本稿では,ビデオ背景音楽生成のためのデータセット,ベンチマークモデル,評価指標を含む完全なレシピを提案する。
様々な音楽アノテーションを備えたビデオおよびシンボリック音楽データセットであるSymMVについて述べる。
また,V-MusProdというビデオバックグラウンド音楽生成フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-21T08:39:48Z) - Lets Play Music: Audio-driven Performance Video Generation [58.77609661515749]
オーディオ駆動型パーパフォーマンスビデオ生成(APVG)という新しいタスクを提案する。
APVGは、特定の音楽オーディオクリップでガイドされた特定の楽器を演奏する人のビデオを合成することを目的としている。
論文 参考訳(メタデータ) (2020-11-05T03:13:46Z) - Foley Music: Learning to Generate Music from Videos [115.41099127291216]
Foley Musicは、楽器を演奏する人々に関するサイレントビデオクリップのために、可愛らしい音楽を合成できるシステムだ。
まず、ビデオから音楽生成に成功するための2つの重要な中間表現、すなわち、ビデオからのボディーキーポイントと、オーディオ録音からのMIDIイベントを識別する。
身体の動きに応じてMIDIイベントシーケンスを正確に予測できるグラフ$-$Transformerフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-21T17:59:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。