論文の概要: MuVi: Video-to-Music Generation with Semantic Alignment and Rhythmic Synchronization
- arxiv url: http://arxiv.org/abs/2410.12957v1
- Date: Wed, 16 Oct 2024 18:44:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:18:09.777764
- Title: MuVi: Video-to-Music Generation with Semantic Alignment and Rhythmic Synchronization
- Title(参考訳): MuVi: セマンティックアライメントとリズム同期によるビデオ音楽生成
- Authors: Ruiqi Li, Siqi Zheng, Xize Cheng, Ziang Zhang, Shengpeng Ji, Zhou Zhao,
- Abstract要約: 本稿では,ビデオコンテンツに合わせた音楽を生成するためのフレームワークであるMuViについて述べる。
MuViは、特別に設計された視覚適応器を通じて映像コンテンツを分析し、文脈的および時間的に関係のある特徴を抽出する。
音声品質と時間同期の両方において, MuVi が優れた性能を示すことを示す。
- 参考スコア(独自算出の注目度): 52.498942604622165
- License:
- Abstract: Generating music that aligns with the visual content of a video has been a challenging task, as it requires a deep understanding of visual semantics and involves generating music whose melody, rhythm, and dynamics harmonize with the visual narratives. This paper presents MuVi, a novel framework that effectively addresses these challenges to enhance the cohesion and immersive experience of audio-visual content. MuVi analyzes video content through a specially designed visual adaptor to extract contextually and temporally relevant features. These features are used to generate music that not only matches the video's mood and theme but also its rhythm and pacing. We also introduce a contrastive music-visual pre-training scheme to ensure synchronization, based on the periodicity nature of music phrases. In addition, we demonstrate that our flow-matching-based music generator has in-context learning ability, allowing us to control the style and genre of the generated music. Experimental results show that MuVi demonstrates superior performance in both audio quality and temporal synchronization. The generated music video samples are available at https://muvi-v2m.github.io.
- Abstract(参考訳): ビデオの視覚的内容に合わせて音楽を生成することは、視覚的意味論の深い理解を必要とし、メロディ、リズム、ダイナミックスが視覚的物語と調和する音楽を生成するため、難しい作業であった。
本稿では,これらの課題を効果的に解決する新しいフレームワークであるMuViについて述べる。
MuViは、特別に設計された視覚適応器を通じて映像コンテンツを分析し、文脈的および時間的に関係のある特徴を抽出する。
これらの特徴は、ビデオのムードやテーマにマッチするだけでなく、リズムやペーシングにも使用される。
また,音楽フレーズの周期性に基く同期を確保するために,コントラスト付き音楽視覚事前学習方式を導入する。
さらに、フローマッチングに基づく音楽生成装置がコンテキスト内学習能力を持ち、生成した音楽のスタイルやジャンルを制御できることを実証する。
実験の結果,MuViは音質と時間同期の両方において優れた性能を示すことがわかった。
生成されたミュージックビデオサンプルはhttps://muvi-v2m.github.io.comで公開されている。
関連論文リスト
- VMAS: Video-to-Music Generation via Semantic Alignment in Web Music Videos [32.741262543860934]
ビデオ入力からバックグラウンド音楽を生成する学習フレームワークを提案する。
我々は,新しいセマンティック・ビデオ・ミュージックアライメント・スキームを用いた生成型ビデオ・ミュージック・トランスフォーマーを開発した。
新しい時間的ビデオエンコーダアーキテクチャにより、多くの高密度なサンプルフレームからなる映像を効率的に処理できる。
論文 参考訳(メタデータ) (2024-09-11T17:56:48Z) - ReSyncer: Rewiring Style-based Generator for Unified Audio-Visually Synced Facial Performer [87.32518573172631]
ReSyncerは運動と外観を統合トレーニングで融合する。
パーソナライズされたパーソナライズされた微調整、ビデオ駆動のリップシンク、話すスタイルの転送、顔交換までサポートしています。
論文 参考訳(メタデータ) (2024-08-06T16:31:45Z) - VidMuse: A Simple Video-to-Music Generation Framework with Long-Short-Term Modeling [71.01050359126141]
ビデオ入力に対応する音楽を生成するためのフレームワークであるVidMuseを提案する。
VidMuseは、ビデオと音響的、意味的に一致した高忠実な音楽を生成する。
論文 参考訳(メタデータ) (2024-06-06T17:58:11Z) - Diff-BGM: A Diffusion Model for Video Background Music Generation [16.94631443719866]
ビデオと音楽に関するマルチモーダル情報を提供するために,詳細なアノテーションとショット検出を備えた高品質な音楽ビデオデータセットを提案する。
次に,音楽の多様性や音楽と映像のアライメントなど,音楽の質を評価するための評価指標を提案する。
Diff-BGMフレームワークは、ビデオの背景音楽を自動的に生成し、生成過程において異なる信号を用いて音楽の異なる側面を制御する。
論文 参考訳(メタデータ) (2024-05-20T09:48:36Z) - Video2Music: Suitable Music Generation from Videos using an Affective
Multimodal Transformer model [32.801213106782335]
我々は、提供されたビデオにマッチできる生成型音楽AIフレームワーク、Video2Musicを開発した。
そこで本研究では,映像コンテンツにマッチする楽曲を感情的に生成する手法を提案する。
論文 参考訳(メタデータ) (2023-11-02T03:33:00Z) - Generative Disco: Text-to-Video Generation for Music Visualization [9.53563436241774]
我々は,大規模な言語モデルとテキスト・ツー・ビデオ生成による音楽視覚化を支援する生成AIシステムであるGenerative Discoを紹介する。
このシステムは、ユーザーが音楽の開始と終了を知らせるプロンプトを見つけ出し、それらの間を音楽のビートに補間する。
色、時間、主題、スタイルの変化を表現するトランジションと、ビデオが主題に焦点を合わせるのに役立つホールドという、これらの生成されたビデオを改善するためのデザインパターンを紹介します。
論文 参考訳(メタデータ) (2023-04-17T18:44:00Z) - Video Background Music Generation: Dataset, Method and Evaluation [31.15901120245794]
本稿では,ビデオ背景音楽生成のためのデータセット,ベンチマークモデル,評価指標を含む完全なレシピを提案する。
様々な音楽アノテーションを備えたビデオおよびシンボリック音楽データセットであるSymMVについて述べる。
また,V-MusProdというビデオバックグラウンド音楽生成フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-21T08:39:48Z) - Quantized GAN for Complex Music Generation from Dance Videos [48.196705493763986]
D2M-GAN(Dance2Music-GAN, D2M-GAN, D2M-GAN)は、ダンスビデオに条件付けされた楽曲のサンプルを生成する新しいマルチモーダルフレームワークである。
提案フレームワークは,ダンスビデオフレームと人体の動きを入力とし,対応する入力に付随する音楽サンプルを生成することを学習する。
論文 参考訳(メタデータ) (2022-04-01T17:53:39Z) - Lets Play Music: Audio-driven Performance Video Generation [58.77609661515749]
オーディオ駆動型パーパフォーマンスビデオ生成(APVG)という新しいタスクを提案する。
APVGは、特定の音楽オーディオクリップでガイドされた特定の楽器を演奏する人のビデオを合成することを目的としている。
論文 参考訳(メタデータ) (2020-11-05T03:13:46Z) - Music Gesture for Visual Sound Separation [121.36275456396075]
ミュージック・ジェスチャ(Music Gesture)は、音楽演奏時の演奏者の身体と指の動きを明示的にモデル化するキーポイントに基づく構造化表現である。
まず、コンテキスト対応グラフネットワークを用いて、視覚的コンテキストと身体力学を統合し、その後、身体の動きと対応する音声信号とを関連付けるために、音声-視覚融合モデルを適用する。
論文 参考訳(メタデータ) (2020-04-20T17:53:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。