Position-Guided Prompt Learning for Anomaly Detection in Chest X-Rays
- URL: http://arxiv.org/abs/2405.11976v2
- Date: Thu, 20 Jun 2024 03:13:45 GMT
- Title: Position-Guided Prompt Learning for Anomaly Detection in Chest X-Rays
- Authors: Zhichao Sun, Yuliang Gu, Yepeng Liu, Zerui Zhang, Zhou Zhao, Yongchao Xu,
- Abstract summary: Anomaly detection in chest X-rays is a critical task.
Recently, CLIP-based methods, pre-trained on a large number of medical images, have shown impressive performance on zero/few-shot downstream tasks.
We propose a position-guided prompt learning method to adapt the task data to the frozen CLIP-based model.
- Score: 46.78926066405227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection in chest X-rays is a critical task. Most methods mainly model the distribution of normal images, and then regard significant deviation from normal distribution as anomaly. Recently, CLIP-based methods, pre-trained on a large number of medical images, have shown impressive performance on zero/few-shot downstream tasks. In this paper, we aim to explore the potential of CLIP-based methods for anomaly detection in chest X-rays. Considering the discrepancy between the CLIP pre-training data and the task-specific data, we propose a position-guided prompt learning method. Specifically, inspired by the fact that experts diagnose chest X-rays by carefully examining distinct lung regions, we propose learnable position-guided text and image prompts to adapt the task data to the frozen pre-trained CLIP-based model. To enhance the model's discriminative capability, we propose a novel structure-preserving anomaly synthesis method within chest x-rays during the training process. Extensive experiments on three datasets demonstrate that our proposed method outperforms some state-of-the-art methods. The code of our implementation is available at https://github.com/sunzc-sunny/PPAD.
Related papers
- Self-supervised pre-training with diffusion model for few-shot landmark detection in x-ray images [0.8793721044482612]
This study introduces a novel application of denoising diffusion probabilistic models (DDPMs) to the landmark detection task.
Our key innovation lies in leveraging DDPMs for self-supervised pre-training in landmark detection.
This method enables accurate landmark detection with minimal annotated training data.
arXiv Detail & Related papers (2024-07-25T15:32:59Z) - SPCXR: Self-supervised Pretraining using Chest X-rays Towards a Domain
Specific Foundation Model [4.397622801930704]
Chest X-rays (CXRs) are a widely used imaging modality for the diagnosis and prognosis of lung disease.
We propose a new self-supervised paradigm, where a general representation from CXRs is learned using a group-masked self-supervised framework.
The pre-trained model is then fine-tuned for domain-specific tasks such as covid-19, pneumonia detection, and general health screening.
arXiv Detail & Related papers (2022-11-23T13:38:16Z) - Long-Tailed Classification of Thorax Diseases on Chest X-Ray: A New
Benchmark Study [75.05049024176584]
We present a benchmark study of the long-tailed learning problem in the specific domain of thorax diseases on chest X-rays.
We focus on learning from naturally distributed chest X-ray data, optimizing classification accuracy over not only the common "head" classes, but also the rare yet critical "tail" classes.
The benchmark consists of two chest X-ray datasets for 19- and 20-way thorax disease classification, containing classes with as many as 53,000 and as few as 7 labeled training images.
arXiv Detail & Related papers (2022-08-29T04:34:15Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
We propose an end-to-end semi-supervised cross-modal contrastive learning framework for medical images.
We first apply an image encoder to classify the chest X-rays and to generate the image features.
The radiomic features are then passed through another dedicated encoder to act as the positive sample for the image features generated from the same chest X-ray.
arXiv Detail & Related papers (2021-04-11T09:16:29Z) - Explaining COVID-19 and Thoracic Pathology Model Predictions by
Identifying Informative Input Features [47.45835732009979]
Neural networks have demonstrated remarkable performance in classification and regression tasks on chest X-rays.
Features attribution methods identify the importance of input features for the output prediction.
We evaluate our methods using both human-centric (ground-truth-based) interpretability metrics, and human-independent feature importance metrics on NIH Chest X-ray8 and BrixIA datasets.
arXiv Detail & Related papers (2021-04-01T11:42:39Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Anomaly Detection on X-Rays Using Self-Supervised Aggregation Learning [16.854288765350283]
SALAD is an end-to-end deep self-supervised methodology for anomaly detection on X-Ray images.
The proposed method is based on an optimization strategy in which a deep neural network is encouraged to represent prototypical local patterns.
Our anomaly score is then derived by measuring similarity to a weighted combination of normal prototypical patterns within a memory bank.
arXiv Detail & Related papers (2020-10-19T20:49:34Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
We show that a deep learning model performing well when tested on the same dataset as training data starts to perform poorly when it is tested on a dataset from a different source.
By employing an adversarial training strategy, we show that a network can be forced to learn a source-invariant representation.
arXiv Detail & Related papers (2020-08-04T07:41:15Z) - Weakly-Supervised Segmentation for Disease Localization in Chest X-Ray
Images [0.0]
We propose a novel approach to the semantic segmentation of medical chest X-ray images with only image-level class labels as supervision.
We show that this approach is applicable to chest X-rays for detecting an anomalous volume of air between the lung and the chest wall.
arXiv Detail & Related papers (2020-07-01T20:48:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.