Noise-tolerant learnability of shallow quantum circuits from statistics and the cost of quantum pseudorandomness
- URL: http://arxiv.org/abs/2405.12085v1
- Date: Mon, 20 May 2024 14:55:20 GMT
- Title: Noise-tolerant learnability of shallow quantum circuits from statistics and the cost of quantum pseudorandomness
- Authors: Chirag Wadhwa, Mina Doosti,
- Abstract summary: We prove the natural robustness of quantum statistical queries for learning quantum processes.
We adapt a learning algorithm for constant-depth quantum circuits to the quantum statistical query setting.
We show the hardness of the quantum threshold search problem from quantum statistical queries.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work studies the learnability of unknown quantum circuits in the near term. We prove the natural robustness of quantum statistical queries for learning quantum processes and provide an efficient way to benchmark various classes of noise from statistics, which gives us a powerful framework for developing noise-tolerant algorithms. We adapt a learning algorithm for constant-depth quantum circuits to the quantum statistical query setting with a small overhead in the query complexity. We prove average-case lower bounds for learning random quantum circuits of logarithmic and higher depths within diamond distance with statistical queries. Additionally, we show the hardness of the quantum threshold search problem from quantum statistical queries and discuss its implications for the learnability of shallow quantum circuits. Finally, we prove that pseudorandom unitaries (PRUs) cannot be constructed using circuits of constant depth by constructing an efficient distinguisher and proving a new variation of the quantum no-free lunch theorem.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Learning unitaries with quantum statistical queries [0.0]
We propose several algorithms for learning unitary operators from quantum statistical queries (QSQs)
Our methods hinge on a novel technique for estimating the Fourier mass of a unitary on a subset of Pauli strings with a single quantum statistical query.
We show that quantum statistical queries lead to an exponentially larger sample complexity for certain tasks, compared to separable measurements to the Choi-Jamiolkowski state.
arXiv Detail & Related papers (2023-10-03T17:56:07Z) - Learning Quantum Processes with Quantum Statistical Queries [0.0]
This paper introduces the first learning framework for studying quantum process learning within the Quantum Statistical Query model.
We propose an efficient QPSQ learner for arbitrary quantum processes accompanied by a provable performance guarantee.
This work marks a significant step towards understanding the learnability of quantum processes and shedding light on their security implications.
arXiv Detail & Related papers (2023-10-03T14:15:20Z) - Sample-size-reduction of quantum states for the noisy linear problem [0.0]
We show that it is possible to reduce a quantum sample size in a quantum random access memory (QRAM) to the linearithmic order.
We achieve a shorter run-time for the noisy linear problem.
arXiv Detail & Related papers (2023-01-08T05:53:17Z) - Quantum simulation using noisy unitary circuits and measurements [0.0]
Noisy quantum circuits have become an important cornerstone of our understanding of quantum many-body dynamics.
We give an overview of two classes of dynamics studied using random-circuit models, with a particular focus on the dynamics of quantum entanglement.
We consider random-circuit sampling experiments and discuss the usefulness of random quantum states for simulating quantum many-body dynamics on NISQ devices.
arXiv Detail & Related papers (2021-12-13T14:00:06Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Robustness Verification of Quantum Classifiers [1.3534683694551501]
We define a formal framework for the verification and analysis of quantum machine learning algorithms against noises.
A robust bound is derived and an algorithm is developed to check whether or not a quantum machine learning algorithm is robust with respect to quantum training data.
Our approach is implemented on Google's Quantum classifier and can verify the robustness of quantum machine learning algorithms with respect to a small disturbance of noises.
arXiv Detail & Related papers (2020-08-17T11:56:23Z) - Statistical Limits of Supervised Quantum Learning [90.0289160657379]
We show that if the bound on the accuracy is taken into account, quantum machine learning algorithms for supervised learning cannot achieve polylogarithmic runtimes in the input dimension.
We conclude that, when no further assumptions on the problem are made, quantum machine learning algorithms for supervised learning can have at most speedups over efficient classical algorithms.
arXiv Detail & Related papers (2020-01-28T17:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.