Learning unitaries with quantum statistical queries
- URL: http://arxiv.org/abs/2310.02254v1
- Date: Tue, 3 Oct 2023 17:56:07 GMT
- Title: Learning unitaries with quantum statistical queries
- Authors: Armando Angrisani
- Abstract summary: We propose several algorithms for learning unitary operators from quantum statistical queries (QSQs)
Our methods hinge on a novel technique for estimating the Fourier mass of a unitary on a subset of Pauli strings with a single quantum statistical query.
We show that quantum statistical queries lead to an exponentially larger sample complexity for certain tasks, compared to separable measurements to the Choi-Jamiolkowski state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose several algorithms for learning unitary operators from quantum
statistical queries (QSQs) with respect to their Choi-Jamiolkowski state.
Quantum statistical queries capture the capabilities of a learner with limited
quantum resources, which receives as input only noisy estimates of expected
values of measurements. Our methods hinge on a novel technique for estimating
the Fourier mass of a unitary on a subset of Pauli strings with a single
quantum statistical query, generalizing a previous result for uniform quantum
examples. Exploiting this insight, we show that the quantum Goldreich-Levin
algorithm can be implemented with quantum statistical queries, whereas the
prior version of the algorithm involves oracle access to the unitary and its
inverse. Moreover, we prove that $\mathcal{O}(\log n)$-juntas and quantum
Boolean functions with constant total influence are efficiently learnable in
our model, and constant-depth circuits are learnable sample-efficiently with
quantum statistical queries. On the other hand, all previous algorithms for
these tasks require direct access to the Choi-Jamiolkowski state or oracle
access to the unitary. In addition, our upper bounds imply that the actions of
those classes of unitaries on locally scrambled ensembles can be efficiently
learned. We also demonstrate that, despite these positive results, quantum
statistical queries lead to an exponentially larger sample complexity for
certain tasks, compared to separable measurements to the Choi-Jamiolkowski
state. In particular, we show an exponential lower bound for learning a class
of phase-oracle unitaries and a double exponential lower bound for testing the
unitarity of channels, adapting to our setting previous arguments for quantum
states. Finally, we propose a new definition of average-case surrogate models,
showing a potential application of our results to hybrid quantum machine
learning.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Noise-tolerant learnability of shallow quantum circuits from statistics and the cost of quantum pseudorandomness [0.0]
We show the natural robustness of quantum statistical queries for learning quantum processes.
We adapt a learning algorithm for constant-depth quantum circuits to the quantum statistical query setting.
We prove that pseudorandom unitaries (PRUs) cannot be constructed using circuits of constant depth.
arXiv Detail & Related papers (2024-05-20T14:55:20Z) - Separable Power of Classical and Quantum Learning Protocols Through the Lens of No-Free-Lunch Theorem [70.42372213666553]
The No-Free-Lunch (NFL) theorem quantifies problem- and data-independent generalization errors regardless of the optimization process.
We categorize a diverse array of quantum learning algorithms into three learning protocols designed for learning quantum dynamics under a specified observable.
Our derived NFL theorems demonstrate quadratic reductions in sample complexity across CLC-LPs, ReQu-LPs, and Qu-LPs.
We attribute this performance discrepancy to the unique capacity of quantum-related learning protocols to indirectly utilize information concerning the global phases of non-orthogonal quantum states.
arXiv Detail & Related papers (2024-05-12T09:05:13Z) - Unifying (Quantum) Statistical and Parametrized (Quantum) Algorithms [65.268245109828]
We take inspiration from Kearns' SQ oracle and Valiant's weak evaluation oracle.
We introduce an extensive yet intuitive framework that yields unconditional lower bounds for learning from evaluation queries.
arXiv Detail & Related papers (2023-10-26T18:23:21Z) - Learning Quantum Processes with Quantum Statistical Queries [0.0]
This paper introduces the first learning framework for studying quantum process learning within the Quantum Statistical Query model.
We propose an efficient QPSQ learner for arbitrary quantum processes accompanied by a provable performance guarantee.
This work marks a significant step towards understanding the learnability of quantum processes and shedding light on their security implications.
arXiv Detail & Related papers (2023-10-03T14:15:20Z) - Schrödinger as a Quantum Programmer: Estimating Entanglement via Steering [3.187381965457262]
We develop a quantum algorithm that tests for and quantifies the separability of a general bipartite state by using the quantum steering effect.
Our findings provide a meaningful connection between steering, entanglement, quantum algorithms, and quantum computational complexity theory.
arXiv Detail & Related papers (2023-03-14T13:55:06Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - On Quantum Circuits for Discrete Graphical Models [1.0965065178451106]
We provide the first method that allows one to provably generate unbiased and independent samples from general discrete factor models.
Our method is compatible with multi-body interactions and its success probability does not depend on the number of variables.
Experiments with quantum simulation as well as actual quantum hardware show that our method can carry out sampling and parameter learning on quantum computers.
arXiv Detail & Related papers (2022-06-01T11:03:51Z) - Quantum variational learning for entanglement witnessing [0.0]
This work focuses on the potential implementation of quantum algorithms allowing to properly classify quantum states defined over a single register of $n$ qubits.
We exploit the notion of "entanglement witness", i.e., an operator whose expectation values allow to identify certain specific states as entangled.
We made use of Quantum Neural Networks (QNNs) in order to successfully learn how to reproduce the action of an entanglement witness.
arXiv Detail & Related papers (2022-05-20T20:14:28Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Statistical Limits of Supervised Quantum Learning [90.0289160657379]
We show that if the bound on the accuracy is taken into account, quantum machine learning algorithms for supervised learning cannot achieve polylogarithmic runtimes in the input dimension.
We conclude that, when no further assumptions on the problem are made, quantum machine learning algorithms for supervised learning can have at most speedups over efficient classical algorithms.
arXiv Detail & Related papers (2020-01-28T17:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.