Noise-tolerant learnability of shallow quantum circuits from statistics and the cost of quantum pseudorandomness
- URL: http://arxiv.org/abs/2405.12085v2
- Date: Mon, 25 Nov 2024 12:42:15 GMT
- Title: Noise-tolerant learnability of shallow quantum circuits from statistics and the cost of quantum pseudorandomness
- Authors: Chirag Wadhwa, Mina Doosti,
- Abstract summary: We show the natural robustness of quantum statistical queries for learning quantum processes.
We adapt a learning algorithm for constant-depth quantum circuits to the quantum statistical query setting.
We prove that pseudorandom unitaries (PRUs) cannot be constructed using circuits of constant depth.
- Score: 0.0
- License:
- Abstract: This work studies the learnability of quantum circuits in the near term. We show the natural robustness of quantum statistical queries for learning quantum processes and provide an efficient way to benchmark global depolarizing noise from statistics, which gives us a powerful framework for developing noise-tolerant algorithms. We adapt a learning algorithm for constant-depth quantum circuits to the quantum statistical query setting with a small overhead in the query complexity. We prove average-case lower bounds for learning random quantum circuits of logarithmic and higher depths within diamond distance with statistical queries. Finally, we prove that pseudorandom unitaries (PRUs) cannot be constructed using circuits of constant depth by constructing an efficient distinguisher and proving a new variation of the quantum no-free lunch theorem.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Attention to Quantum Complexity [21.766643620345494]
We introduce the Quantum Attention Network (QuAN), a versatile classical AI framework.
QuAN treats measurement snapshots as tokens while respecting their permutation invariance.
We rigorously test QuAN across three distinct quantum simulation settings.
arXiv Detail & Related papers (2024-05-19T17:46:40Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Robust Quantum Gates against Correlated Noise in Integrated Quantum Chips [11.364693110852738]
We report the experimental realization of robust quantum gates in superconducting quantum circuits.
Our work provides a versatile toolbox for achieving noise-resilient complex quantum circuits.
arXiv Detail & Related papers (2024-01-03T16:12:35Z) - Learning unitaries with quantum statistical queries [0.0]
We propose several algorithms for learning unitary operators from quantum statistical queries (QSQs)
Our methods hinge on a novel technique for estimating the Fourier mass of a unitary on a subset of Pauli strings with a single quantum statistical query.
We show that quantum statistical queries lead to an exponentially larger sample complexity for certain tasks, compared to separable measurements to the Choi-Jamiolkowski state.
arXiv Detail & Related papers (2023-10-03T17:56:07Z) - Learning Quantum Processes with Quantum Statistical Queries [0.0]
This paper introduces the first learning framework for studying quantum process learning within the Quantum Statistical Query model.
We propose an efficient QPSQ learner for arbitrary quantum processes accompanied by a provable performance guarantee.
This work marks a significant step towards understanding the learnability of quantum processes and shedding light on their security implications.
arXiv Detail & Related papers (2023-10-03T14:15:20Z) - Sample-size-reduction of quantum states for the noisy linear problem [0.0]
We show that it is possible to reduce a quantum sample size in a quantum random access memory (QRAM) to the linearithmic order.
We achieve a shorter run-time for the noisy linear problem.
arXiv Detail & Related papers (2023-01-08T05:53:17Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z) - Statistical Limits of Supervised Quantum Learning [90.0289160657379]
We show that if the bound on the accuracy is taken into account, quantum machine learning algorithms for supervised learning cannot achieve polylogarithmic runtimes in the input dimension.
We conclude that, when no further assumptions on the problem are made, quantum machine learning algorithms for supervised learning can have at most speedups over efficient classical algorithms.
arXiv Detail & Related papers (2020-01-28T17:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.