Open-Source Assessments of AI Capabilities: The Proliferation of AI Analysis Tools, Replicating Competitor Models, and the Zhousidun Dataset
- URL: http://arxiv.org/abs/2405.12167v3
- Date: Fri, 24 May 2024 19:59:58 GMT
- Title: Open-Source Assessments of AI Capabilities: The Proliferation of AI Analysis Tools, Replicating Competitor Models, and the Zhousidun Dataset
- Authors: Ritwik Gupta, Leah Walker, Eli Glickman, Raine Koizumi, Sarthak Bhatnagar, Andrew W. Reddie,
- Abstract summary: The integration of artificial intelligence into military capabilities has become a norm for major military power across the globe.
This paper demonstrates an open-source methodology for analyzing military AI models through a detailed examination of the Zhousidun dataset.
- Score: 0.4864598981593653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of artificial intelligence (AI) into military capabilities has become a norm for major military power across the globe. Understanding how these AI models operate is essential for maintaining strategic advantages and ensuring security. This paper demonstrates an open-source methodology for analyzing military AI models through a detailed examination of the Zhousidun dataset, a Chinese-originated dataset that exhaustively labels critical components on American and Allied destroyers. By demonstrating the replication of a state-of-the-art computer vision model on this dataset, we illustrate how open-source tools can be leveraged to assess and understand key military AI capabilities. This methodology offers a robust framework for evaluating the performance and potential of AI-enabled military capabilities, thus enhancing the accuracy and reliability of strategic assessments.
Related papers
- The GPT Dilemma: Foundation Models and the Shadow of Dual-Use [0.0]
This paper examines the dual-use challenges of foundation models and the risks they pose for international security.
The paper analyzes four critical factors in the development cycle of foundation models: model inputs, capabilities, system use cases, and system deployment.
Using the Intermediate-Range Nuclear Forces (INF) Treaty as a case study, this paper proposes several strategies to mitigate the associated risks.
arXiv Detail & Related papers (2024-07-29T22:36:27Z) - Cloud-based XAI Services for Assessing Open Repository Models Under Adversarial Attacks [7.500941533148728]
We propose a cloud-based service framework that encapsulates computing components and assessment tasks into pipelines.
We demonstrate the application of XAI services for assessing five quality attributes of AI models.
arXiv Detail & Related papers (2024-01-22T00:37:01Z) - Levels of AGI for Operationalizing Progress on the Path to AGI [64.59151650272477]
We propose a framework for classifying the capabilities and behavior of Artificial General Intelligence (AGI) models and their precursors.
This framework introduces levels of AGI performance, generality, and autonomy, providing a common language to compare models, assess risks, and measure progress along the path to AGI.
arXiv Detail & Related papers (2023-11-04T17:44:58Z) - On the Robustness of Aspect-based Sentiment Analysis: Rethinking Model,
Data, and Training [109.9218185711916]
Aspect-based sentiment analysis (ABSA) aims at automatically inferring the specific sentiment polarities toward certain aspects of products or services behind social media texts or reviews.
We propose to enhance the ABSA robustness by systematically rethinking the bottlenecks from all possible angles, including model, data, and training.
arXiv Detail & Related papers (2023-04-19T11:07:43Z) - The Role of Large Language Models in the Recognition of Territorial
Sovereignty: An Analysis of the Construction of Legitimacy [67.44950222243865]
We argue that technology tools like Google Maps and Large Language Models (LLM) are often perceived as impartial and objective.
We highlight the case of three controversial territories: Crimea, West Bank and Transnitria, by comparing the responses of ChatGPT against Wikipedia information and United Nations resolutions.
arXiv Detail & Related papers (2023-03-17T08:46:49Z) - A curated, ontology-based, large-scale knowledge graph of artificial
intelligence tasks and benchmarks [4.04540578484476]
Intelligence Task Ontology and Knowledge Graph (ITO) is a comprehensive resource on artificial intelligence tasks, benchmark results and performance metrics.
ITO is a richly structured and manually curated resource on artificial intelligence tasks, benchmark results and performance metrics.
The goal of ITO is to enable precise and network-based analyses of the global landscape of AI tasks and capabilities.
arXiv Detail & Related papers (2021-10-04T13:25:53Z) - Informing Autonomous Deception Systems with Cyber Expert Performance
Data [0.0]
This paper explores the potential to use Inverse Reinforcement Learning (IRL) to gain insight into attacker actions, utilities of those actions, and ultimately decision points which cyber deception could thwart.
The Tularosa study, as one example, provides experimental data of real-world techniques and tools commonly used by attackers, from which core data can be leveraged to inform an autonomous cyber defense system.
arXiv Detail & Related papers (2021-08-31T20:28:09Z) - A Review of Explainable Artificial Intelligence in Manufacturing [0.8793721044482613]
The implementation of Artificial Intelligence (AI) systems in the manufacturing domain enables higher production efficiency, outstanding performance, and safer operations.
Despite the high accuracy of these models, they are mostly considered black boxes: they are unintelligible to the human.
We present an overview of Explainable Artificial Intelligence (XAI) techniques as a means of boosting the transparency of models.
arXiv Detail & Related papers (2021-07-05T21:59:55Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Trustworthy AI [75.99046162669997]
Brittleness to minor adversarial changes in the input data, ability to explain the decisions, address the bias in their training data, are some of the most prominent limitations.
We propose the tutorial on Trustworthy AI to address six critical issues in enhancing user and public trust in AI systems.
arXiv Detail & Related papers (2020-11-02T20:04:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.