Metacognitive Capabilities of LLMs: An Exploration in Mathematical Problem Solving
- URL: http://arxiv.org/abs/2405.12205v1
- Date: Mon, 20 May 2024 17:45:26 GMT
- Title: Metacognitive Capabilities of LLMs: An Exploration in Mathematical Problem Solving
- Authors: Aniket Didolkar, Anirudh Goyal, Nan Rosemary Ke, Siyuan Guo, Michal Valko, Timothy Lillicrap, Danilo Rezende, Yoshua Bengio, Michael Mozer, Sanjeev Arora,
- Abstract summary: We develop a prompt-guided interaction procedure to get a powerful LLM to assign sensible skill labels to math questions.
We then have it perform semantic clustering to obtain coarser families of skill labels.
These coarse skill labels look interpretable to humans.
- Score: 86.04158840879727
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Metacognitive knowledge refers to humans' intuitive knowledge of their own thinking and reasoning processes. Today's best LLMs clearly possess some reasoning processes. The paper gives evidence that they also have metacognitive knowledge, including ability to name skills and procedures to apply given a task. We explore this primarily in context of math reasoning, developing a prompt-guided interaction procedure to get a powerful LLM to assign sensible skill labels to math questions, followed by having it perform semantic clustering to obtain coarser families of skill labels. These coarse skill labels look interpretable to humans. To validate that these skill labels are meaningful and relevant to the LLM's reasoning processes we perform the following experiments. (a) We ask GPT-4 to assign skill labels to training questions in math datasets GSM8K and MATH. (b) When using an LLM to solve the test questions, we present it with the full list of skill labels and ask it to identify the skill needed. Then it is presented with randomly selected exemplar solved questions associated with that skill label. This improves accuracy on GSM8k and MATH for several strong LLMs, including code-assisted models. The methodology presented is domain-agnostic, even though this article applies it to math problems.
Related papers
- Understanding LLMs' Fluid Intelligence Deficiency: An Analysis of the ARC Task [71.61879949813998]
In cognitive research, the latter ability is referred to as fluid intelligence, which is considered to be critical for assessing human intelligence.
Recent research on fluid intelligence assessments has highlighted significant deficiencies in LLMs' abilities.
Our study revealed three major limitations in existing LLMs: limited ability for skill composition, unfamiliarity with abstract input formats, and the intrinsic deficiency of left-to-right decoding.
arXiv Detail & Related papers (2025-02-11T02:31:09Z) - LLM The Genius Paradox: A Linguistic and Math Expert's Struggle with Simple Word-based Counting Problems [28.72485319617863]
LLMs struggle with some basic tasks that humans find trivial to handle, e.g., counting the number of character r's in the wordstrawberry.
We measure transferability of advanced mathematical and coding reasoning capabilities from specialized LLMs to simple counting tasks.
Compared with strategies such as finetuning and in-context learning, we show that engaging reasoning is the most robust and efficient way to help LLMs better perceive tasks.
arXiv Detail & Related papers (2024-10-18T04:17:16Z) - AI-Assisted Generation of Difficult Math Questions [78.7547836422727]
Current training positions mathematical reasoning as a core capability.
There is unmet demand for diverse and challenging math questions.
We present a design framework that combines the strengths of LLMs with a human-in-the-loop approach.
arXiv Detail & Related papers (2024-07-30T17:55:36Z) - Knowledge Tagging System on Math Questions via LLMs with Flexible Demonstration Retriever [48.5585921817745]
Large Language Models (LLMs) are used to automate the knowledge tagging task.
We show the strong performance of zero- and few-shot results over math questions knowledge tagging tasks.
By proposing a reinforcement learning-based demonstration retriever, we successfully exploit the great potential of different-sized LLMs.
arXiv Detail & Related papers (2024-06-19T23:30:01Z) - Automate Knowledge Concept Tagging on Math Questions with LLMs [48.5585921817745]
Knowledge concept tagging for questions plays a crucial role in contemporary intelligent educational applications.
Traditionally, these annotations have been conducted manually with help from pedagogical experts.
In this paper, we explore the automating the tagging task using Large Language Models (LLMs)
arXiv Detail & Related papers (2024-03-26T00:09:38Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
Large language models (LLMs) have achieved impressive performance across various mathematical reasoning benchmarks.
One essential and frequently occurring evidence is that when the math questions are slightly changed, LLMs can behave incorrectly.
This motivates us to evaluate the robustness of LLMs' math reasoning capability by testing a wide range of question variations.
arXiv Detail & Related papers (2024-02-29T15:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.