Influence based explainability of brain tumors segmentation in multimodal Magnetic Resonance Imaging
- URL: http://arxiv.org/abs/2405.12222v1
- Date: Fri, 5 Apr 2024 17:07:21 GMT
- Title: Influence based explainability of brain tumors segmentation in multimodal Magnetic Resonance Imaging
- Authors: Tommaso Torda, Andrea Ciardiello, Simona Gargiulo, Greta Grillo, Simone Scardapane, Cecilia Voena, Stefano Giagu,
- Abstract summary: We focus on the segmentation of medical images task, where most explainability methods proposed so far provide a visual explanation in terms of an input saliency map.
The aim of this work is to extend, implement and test instead an influence-based explainability algorithm, TracIn, proposed originally for classification tasks.
- Score: 3.1994667952195273
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years Artificial Intelligence has emerged as a fundamental tool in medical applications. Despite this rapid development, deep neural networks remain black boxes that are difficult to explain, and this represents a major limitation for their use in clinical practice. We focus on the segmentation of medical images task, where most explainability methods proposed so far provide a visual explanation in terms of an input saliency map. The aim of this work is to extend, implement and test instead an influence-based explainability algorithm, TracIn, proposed originally for classification tasks, in a challenging clinical problem, i.e., multiclass segmentation of tumor brains in multimodal Magnetic Resonance Imaging. We verify the faithfulness of the proposed algorithm linking the similarities of the latent representation of the network to the TracIn output. We further test the capacity of the algorithm to provide local and global explanations, and we suggest that it can be adopted as a tool to select the most relevant features used in the decision process. The method is generalizable for all semantic segmentation tasks where classes are mutually exclusive, which is the standard framework in these cases.
Related papers
- Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Implicit Anatomical Rendering for Medical Image Segmentation with
Stochastic Experts [11.007092387379078]
We propose MORSE, a generic implicit neural rendering framework designed at an anatomical level to assist learning in medical image segmentation.
Our approach is to formulate medical image segmentation as a rendering problem in an end-to-end manner.
Our experiments demonstrate that MORSE can work well with different medical segmentation backbones.
arXiv Detail & Related papers (2023-04-06T16:44:03Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Automatic Semantic Segmentation of the Lumbar Spine. Clinical
Applicability in a Multi-parametric and Multi-centre MRI study [0.0]
This document describes the topologies and analyses the results of the neural network designs that obtained the most accurate segmentations.
Several of the proposed designs outperform the standard U-Net used as baseline, especially when used in ensembles where the output of multiple neural networks is combined according to different strategies.
arXiv Detail & Related papers (2021-11-16T17:33:05Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
We propose OrganNet which learns a generalized organ concept from a set of annotated organ classes and then transfer this concept to unseen classes.
We show that OrganNet can effectively resist the wide variations in organ morphology and produce state-of-the-art results in one-shot segmentation task.
arXiv Detail & Related papers (2021-03-30T13:41:12Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - CANet: Context Aware Network for 3D Brain Glioma Segmentation [33.34852704111597]
We propose a novel approach named Context-Aware Network (CANet) for brain glioma segmentation.
CANet captures high dimensional and discriminative features with contexts from both the convolutional space and feature interaction graphs.
We evaluate our method using publicly accessible brain glioma segmentation datasets BRATS 2017, BRATS 2018 and BRATS 2019.
arXiv Detail & Related papers (2020-07-15T16:12:41Z) - Boundary-aware Context Neural Network for Medical Image Segmentation [15.585851505721433]
Medical image segmentation can provide reliable basis for further clinical analysis and disease diagnosis.
Most existing CNNs-based methods produce unsatisfactory segmentation mask without accurate object boundaries.
In this paper, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation.
arXiv Detail & Related papers (2020-05-03T02:35:49Z) - Region of Interest Identification for Brain Tumors in Magnetic Resonance
Images [8.75217589103206]
We propose a fast, automated method, with light computational complexity, to find the smallest bounding box around the tumor region.
This region-of-interest can be used as a preprocessing step in training networks for subregion tumor segmentation.
The proposed method is evaluated on the BraTS 2015 dataset, and the average gained DICE score is 0.73, which is an acceptable result for this application.
arXiv Detail & Related papers (2020-02-26T14:10:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.