Deep learning-based hyperspectral image reconstruction for quality assessment of agro-product
- URL: http://arxiv.org/abs/2405.12313v1
- Date: Mon, 20 May 2024 18:15:20 GMT
- Title: Deep learning-based hyperspectral image reconstruction for quality assessment of agro-product
- Authors: Md. Toukir Ahmed, Ocean Monjur, Mohammed Kamruzzaman,
- Abstract summary: The goal of this study was to reconstruct hyperspectral images from RGB images through deep learning for agricultural applications.
The algorithm accurately reconstructed the hyperspectral images from RGB images, with the resulting spectra closely matching the ground-truth.
These findings highlight the potential of deep learning-based hyperspectral image reconstruction as a low-cost, efficient tool for various agricultural uses.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral imaging (HSI) has recently emerged as a promising tool for many agricultural applications; however, the technology cannot be directly used in a real-time system due to the extensive time needed to process large volumes of data. Consequently, the development of a simple, compact, and cost-effective imaging system is not possible with the current HSI systems. Therefore, the overall goal of this study was to reconstruct hyperspectral images from RGB images through deep learning for agricultural applications. Specifically, this study used Hyperspectral Convolutional Neural Network - Dense (HSCNN-D) to reconstruct hyperspectral images from RGB images for predicting soluble solid content (SSC) in sweet potatoes. The algorithm accurately reconstructed the hyperspectral images from RGB images, with the resulting spectra closely matching the ground-truth. The partial least squares regression (PLSR) model based on reconstructed spectra outperformed the model using the full spectral range, demonstrating its potential for SSC prediction in sweet potatoes. These findings highlight the potential of deep learning-based hyperspectral image reconstruction as a low-cost, efficient tool for various agricultural uses.
Related papers
- Comparative Analysis of Hyperspectral Image Reconstruction Using Deep Learning for Agricultural and Biological Applications [0.0]
This study explored deep learning-based hyperspectral image reconstruction from RGB (Red, Green, Blue) images, particularly for agricultural products.
The results revealed the prospect of deep learning-based hyperspectral image reconstruction as a cost-effective and efficient quality assessment tool for agricultural and biological applications.
arXiv Detail & Related papers (2024-05-22T04:20:30Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - A Trainable Spectral-Spatial Sparse Coding Model for Hyperspectral Image
Restoration [36.525810477650026]
Hyperspectral imaging offers new perspectives for diverse applications.
The lack of accurate ground-truth "clean" hyperspectral signals on the spot makes restoration tasks challenging.
In this paper, we advocate for a hybrid approach based on sparse coding principles.
arXiv Detail & Related papers (2021-11-18T14:16:04Z) - Semantic-embedded Unsupervised Spectral Reconstruction from Single RGB
Images in the Wild [48.44194221801609]
We propose a new lightweight and end-to-end learning-based framework to tackle this challenge.
We progressively spread the differences between input RGB images and re-projected RGB images from recovered HS images via effective camera spectral response function estimation.
Our method significantly outperforms state-of-the-art unsupervised methods and even exceeds the latest supervised method under some settings.
arXiv Detail & Related papers (2021-08-15T05:19:44Z) - Deep-learning-based Hyperspectral imaging through a RGB camera [6.931572045689959]
Hyperspectral image (HSI) contains both spatial pattern and spectral information which has been widely used in food safety, remote sensing, and medical detection.
Recently, it has been reported that HSI can be reconstructed from single RGB image using convolution neural network (CNN) algorithms.
In this study, we focused on the influence of the RGB camera spectral sensitivity (CSS) on the HSI.
arXiv Detail & Related papers (2021-07-12T04:23:25Z) - Learnable Reconstruction Methods from RGB Images to Hyperspectral
Imaging: A Survey [27.235897806207706]
Many alternative spectral imaging methods have been proposed by directly reconstructing the hyperspectral information from lower-cost, more available RGB images.
We present a thorough investigation of these state-of-the-art spectral reconstruction methods from the widespread RGB images.
Most of the data-driven deep learning methods are superior to prior-based methods in terms of reconstruction accuracy and quality despite lower speeds.
arXiv Detail & Related papers (2021-06-30T09:52:41Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Deep Gaussian Scale Mixture Prior for Spectral Compressive Imaging [48.34565372026196]
We propose a novel HSI reconstruction method based on the a Posterior (MAP) estimation framework.
We also propose to estimate the local means of the GSM models by the deep convolutional neural network (DCNN)
arXiv Detail & Related papers (2021-03-12T08:57:06Z) - Real Image Super Resolution Via Heterogeneous Model Ensemble using
GP-NAS [63.48801313087118]
We propose a new method for image superresolution using deep residual network with dense skip connections.
The proposed method won the first place in all three tracks of the AIM 2020 Real Image Super-Resolution Challenge.
arXiv Detail & Related papers (2020-09-02T22:33:23Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.