Hierarchical SegNet with Channel and Context Attention for Accurate Lung Segmentation in Chest X-ray Images
- URL: http://arxiv.org/abs/2405.12318v1
- Date: Mon, 20 May 2024 18:29:41 GMT
- Title: Hierarchical SegNet with Channel and Context Attention for Accurate Lung Segmentation in Chest X-ray Images
- Authors: Mohammad Ali Labbaf Khaniki, Nazanin Mahjourian, Mohammad Manthouri,
- Abstract summary: Lung segmentation in chest X-ray images is a critical task in medical image analysis, enabling accurate diagnosis and treatment of various lung diseases.
We propose a novel approach for lung segmentation by integrating Hierarchical SegNet with a proposed multi-modal attention mechanism.
Experimental results demonstrate that our proposed approach achieves state-of-the-art performance in lung segmentation tasks, outperforming existing methods.
- Score: 0.40964539027092917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lung segmentation in chest X-ray images is a critical task in medical image analysis, enabling accurate diagnosis and treatment of various lung diseases. In this paper, we propose a novel approach for lung segmentation by integrating Hierarchical SegNet with a proposed multi-modal attention mechanism. The channel attention mechanism highlights specific feature maps or channels crucial for lung region segmentation, while the context attention mechanism adaptively weighs the importance of different spatial regions. By combining both mechanisms, the proposed mechanism enables the model to better capture complex patterns and relationships between various features, leading to improved segmentation accuracy and better feature representation. Furthermore, an attention gating mechanism is employed to integrate attention information with encoder features, allowing the model to adaptively weigh the importance of different attention features and ignore irrelevant ones. Experimental results demonstrate that our proposed approach achieves state-of-the-art performance in lung segmentation tasks, outperforming existing methods. The proposed approach has the potential to improve the accuracy and efficiency of lung disease diagnosis and treatment, and can be extended to other medical image analysis tasks.
Related papers
- Deep Learning-Based Channel Squeeze U-Structure for Lung Nodule Detection and Segmentation [7.53596352508181]
This paper introduces a novel deep-learning method for the automatic detection and segmentation of lung nodules.
The method demonstrates superior performance in terms of sensitivity, Dice similarity coefficient, precision, and mean Intersection over Union (IoU)
The results indicate that this approach holds significant potential for improving computer-aided diagnosis systems.
arXiv Detail & Related papers (2024-09-20T19:47:07Z) - Multi-dimension Transformer with Attention-based Filtering for Medical Image Segmentation [16.491730188616323]
We propose a multi-dimension transformer with attention-based filtering (MDT-AF) for medical image segmentation.
MDT-AF incorporates an attention-based feature filtering mechanism into the patch embedding blocks and employs a coarse-to-fine process to mitigate the impact of low signal-to-noise ratio.
Experimental results on three public medical image segmentation benchmarks show that MDT-AF achieves state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2024-05-20T18:52:41Z) - A Novel Approach to Chest X-ray Lung Segmentation Using U-net and Modified Convolutional Block Attention Module [0.46040036610482665]
This paper presents a novel approach for lung segmentation in chest X-ray images by integrating U-net with attention mechanisms.
The proposed method enhances the U-net architecture by incorporating a Convolutional Block Attention Module (CBAM)
The adoption of the CBAM in conjunction with the U-net architecture marks a significant advancement in the field of medical imaging.
arXiv Detail & Related papers (2024-04-22T16:33:06Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
The article introduces an efficient residual cross-spatial attention guided inception U-Net (RCA-IUnet) model with minimal training parameters for tumor segmentation.
The RCA-IUnet model follows U-Net topology with residual inception depth-wise separable convolution and hybrid pooling layers.
Cross-spatial attention filters are added to suppress the irrelevant features and focus on the target structure.
arXiv Detail & Related papers (2021-08-05T10:35:06Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z) - Heart Sound Segmentation using Bidirectional LSTMs with Attention [37.62160903348547]
We propose a novel framework for the segmentation of phonocardiogram (PCG) signals into heart states.
We exploit recent advancements in attention based learning to segment the PCG signal.
The proposed method attains state-of-the-art performance on multiple benchmarks including both human and animal heart recordings.
arXiv Detail & Related papers (2020-04-02T02:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.