Paired Conditional Generative Adversarial Network for Highly Accelerated Liver 4D MRI
- URL: http://arxiv.org/abs/2405.12357v1
- Date: Mon, 20 May 2024 20:14:23 GMT
- Title: Paired Conditional Generative Adversarial Network for Highly Accelerated Liver 4D MRI
- Authors: Di Xu, Xin Miao, Hengjie Liu, Jessica E. Scholey, Wensha Yang, Mary Feng, Michael Ohliger, Hui Lin, Yi Lao, Yang Yang, Ke Sheng,
- Abstract summary: We propose the Reconstruct Paired Generative Adrial Network (Re-Con-GAN) to shorten the 4D MRI reconstruction time.
Three types of networks, ResNet9, UNet and reconstruction swin transformer, were explored as generators.
Re-Con-GAN consistently achieved comparable/better PSNR, SSIM, and RMSE scores compared to CS/UNet models.
- Score: 8.880834588879525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose: 4D MRI with high spatiotemporal resolution is desired for image-guided liver radiotherapy. Acquiring densely sampling k-space data is time-consuming. Accelerated acquisition with sparse samples is desirable but often causes degraded image quality or long reconstruction time. We propose the Reconstruct Paired Conditional Generative Adversarial Network (Re-Con-GAN) to shorten the 4D MRI reconstruction time while maintaining the reconstruction quality. Methods: Patients who underwent free-breathing liver 4D MRI were included in the study. Fully- and retrospectively under-sampled data at 3, 6 and 10 times (3x, 6x and 10x) were first reconstructed using the nuFFT algorithm. Re-Con-GAN then trained input and output in pairs. Three types of networks, ResNet9, UNet and reconstruction swin transformer, were explored as generators. PatchGAN was selected as the discriminator. Re-Con-GAN processed the data (3D+t) as temporal slices (2D+t). A total of 48 patients with 12332 temporal slices were split into training (37 patients with 10721 slices) and test (11 patients with 1611 slices). Results: Re-Con-GAN consistently achieved comparable/better PSNR, SSIM, and RMSE scores compared to CS/UNet models. The inference time of Re-Con-GAN, UNet and CS are 0.15s, 0.16s, and 120s. The GTV detection task showed that Re-Con-GAN and CS, compared to UNet, better improved the dice score (3x Re-Con-GAN 80.98%; 3x CS 80.74%; 3x UNet 79.88%) of unprocessed under-sampled images (3x 69.61%). Conclusion: A generative network with adversarial training is proposed with promising and efficient reconstruction results demonstrated on an in-house dataset. The rapid and qualitative reconstruction of 4D liver MR has the potential to facilitate online adaptive MR-guided radiotherapy for liver cancer.
Related papers
- Cycle-Constrained Adversarial Denoising Convolutional Network for PET Image Denoising: Multi-Dimensional Validation on Large Datasets with Reader Study and Real Low-Dose Data [9.160782425067712]
We propose a Cycle-versa Adrial Denoising Convolutional Network (Cycle-DCN) to reconstruct full-dose-quality images from low-dose scans.
Experiments were conducted on a large dataset consisting of raw PET brain data from 1,224 patients.
Cycle-DCN significantly improves average Peak Signal-to-Noise Ratio (PSNR), SSIM, and Normalized Root Mean Square Error (NRMSE) across three dose levels.
arXiv Detail & Related papers (2024-10-31T04:34:28Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Deep-ER: Deep Learning ECCENTRIC Reconstruction for fast high-resolution neurometabolic imaging [3.3771864230870072]
Altered neurometabolism is an important pathological mechanism in many neurological diseases and brain cancer.
Deep learning ECCENTRIC reconstruction provides 600-fold faster reconstruction than conventional methods.
arXiv Detail & Related papers (2024-09-26T21:20:51Z) - Deep Learning-based Intraoperative MRI Reconstruction [0.0]
A deep learning (DL) model was trained on the fastMRI neuro dataset to mimic the data from the iMRI protocol.
A comparative analysis was conducted between the conventional compressed sense (CS) method and the trained DL reconstruction method.
The DL reconstruction was strongly favored or favored over the CS reconstruction for 33/40, 39/40, and 8 of cases for reader 1, 2, and 3, respectively.
arXiv Detail & Related papers (2024-01-23T13:57:50Z) - Cine cardiac MRI reconstruction using a convolutional recurrent network
with refinement [9.173298795526152]
We investigate the use of a convolutional recurrent neural network (CRNN) architecture to exploit temporal correlations in cardiac MRI reconstruction.
This is combined with a single-image super-resolution refinement module to improve single coil reconstruction by 4.4% in structural similarity and 3.9% in normalised mean square error.
The proposed model demonstrates considerable enhancements compared to the baseline case and holds promising potential for further improving cardiac MRI reconstruction.
arXiv Detail & Related papers (2023-09-23T14:07:04Z) - REGAS: REspiratory-GAted Synthesis of Views for Multi-Phase CBCT
Reconstruction from a single 3D CBCT Acquisition [75.64791080418162]
REGAS proposes a self-supervised method to synthesize the undersampled tomographic views and mitigate aliasing artifacts in reconstructed images.
To address the large memory cost of deep neural networks on high resolution 4D data, REGAS introduces a novel Ray Path Transformation (RPT) that allows for distributed, differentiable forward projections.
arXiv Detail & Related papers (2022-08-17T03:42:19Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - ReconResNet: Regularised Residual Learning for MR Image Reconstruction
of Undersampled Cartesian and Radial Data [0.3694429692322631]
The speed of acquisition can be increased by ignoring parts of the data (undersampling)
This leads to the degradation of image quality, such as loss of resolution or introduction of image artefacts.
Deep learning has emerged as a very important area of research and has shown immense potential in solving inverse problems.
arXiv Detail & Related papers (2021-03-16T17:24:30Z) - Towards Ultrafast MRI via Extreme k-Space Undersampling and
Superresolution [65.25508348574974]
We go below the MRI acceleration factors reported by all published papers that reference the original fastMRI challenge.
We consider powerful deep learning based image enhancement methods to compensate for the underresolved images.
The quality of the reconstructed images surpasses that of the other methods, yielding an MSE of 0.00114, a PSNR of 29.6 dB, and an SSIM of 0.956 at x16 acceleration factor.
arXiv Detail & Related papers (2021-03-04T10:45:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.