Layout Agnostic Human Activity Recognition in Smart Homes through Textual Descriptions Of Sensor Triggers (TDOST)
- URL: http://arxiv.org/abs/2405.12368v1
- Date: Mon, 20 May 2024 20:37:44 GMT
- Title: Layout Agnostic Human Activity Recognition in Smart Homes through Textual Descriptions Of Sensor Triggers (TDOST)
- Authors: Megha Thukral, Sourish Gunesh Dhekane, Shruthi K. Hiremath, Harish Haresamudram, Thomas Ploetz,
- Abstract summary: We develop a layout-agnostic modeling approach for human activity recognition (HAR) systems in smart homes.
We generate Textual Descriptions Of Sensor Triggers (TDOST) that encapsulate the surrounding trigger conditions.
We demonstrate the effectiveness of TDOST-based models in unseen smart homes through experiments on benchmarked CASAS datasets.
- Score: 0.22354214294493352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human activity recognition (HAR) using ambient sensors in smart homes has numerous applications for human healthcare and wellness. However, building general-purpose HAR models that can be deployed to new smart home environments requires a significant amount of annotated sensor data and training overhead. Most smart homes vary significantly in their layouts, i.e., floor plans and the specifics of sensors embedded, resulting in low generalizability of HAR models trained for specific homes. We address this limitation by introducing a novel, layout-agnostic modeling approach for HAR systems in smart homes that utilizes the transferrable representational capacity of natural language descriptions of raw sensor data. To this end, we generate Textual Descriptions Of Sensor Triggers (TDOST) that encapsulate the surrounding trigger conditions and provide cues for underlying activities to the activity recognition models. Leveraging textual embeddings, rather than raw sensor data, we create activity recognition systems that predict standard activities across homes without either (re-)training or adaptation on target homes. Through an extensive evaluation, we demonstrate the effectiveness of TDOST-based models in unseen smart homes through experiments on benchmarked CASAS datasets. Furthermore, we conduct a detailed analysis of how the individual components of our approach affect downstream activity recognition performance.
Related papers
- Scaling Wearable Foundation Models [54.93979158708164]
We investigate the scaling properties of sensor foundation models across compute, data, and model size.
Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM.
Our results establish the scaling laws of LSM for tasks such as imputation, extrapolation, both across time and sensor modalities.
arXiv Detail & Related papers (2024-10-17T15:08:21Z) - Know Thy Neighbors: A Graph Based Approach for Effective Sensor-Based
Human Activity Recognition in Smart Homes [0.0]
We propose a novel graph-guided neural network approach for Human Activity Recognition (HAR) in smart homes.
We accomplish this by learning a more expressive graph structure representing the sensor network in a smart home.
Our approach maps discrete input sensor measurements to a feature space through the application of attention mechanisms.
arXiv Detail & Related papers (2023-11-16T02:43:13Z) - A Real-time Human Pose Estimation Approach for Optimal Sensor Placement
in Sensor-based Human Activity Recognition [63.26015736148707]
This paper introduces a novel methodology to resolve the issue of optimal sensor placement for Human Activity Recognition.
The derived skeleton data provides a unique strategy for identifying the optimal sensor location.
Our findings indicate that the vision-based method for sensor placement offers comparable results to the conventional deep learning approach.
arXiv Detail & Related papers (2023-07-06T10:38:14Z) - Unsupervised Statistical Feature-Guided Diffusion Model for Sensor-based Human Activity Recognition [3.2319909486685354]
A key problem holding up progress in wearable sensor-based human activity recognition is the unavailability of diverse and labeled training data.
We propose an unsupervised statistical feature-guided diffusion model specifically optimized for wearable sensor-based human activity recognition.
By conditioning the diffusion model on statistical information such as mean, standard deviation, Z-score, and skewness, we generate diverse and representative synthetic sensor data.
arXiv Detail & Related papers (2023-05-30T15:12:59Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Bayesian Imitation Learning for End-to-End Mobile Manipulation [80.47771322489422]
Augmenting policies with additional sensor inputs, such as RGB + depth cameras, is a straightforward approach to improving robot perception capabilities.
We show that using the Variational Information Bottleneck to regularize convolutional neural networks improves generalization to held-out domains.
We demonstrate that our method is able to help close the sim-to-real gap and successfully fuse RGB and depth modalities.
arXiv Detail & Related papers (2022-02-15T17:38:30Z) - Attention-Based Sensor Fusion for Human Activity Recognition Using IMU
Signals [4.558966602878624]
We propose a novel attention-based approach to human activity recognition using multiple IMU sensors worn at different body locations.
An attention-based fusion mechanism is developed to learn the importance of sensors at different body locations and to generate an attentive feature representation.
The proposed approach is evaluated using five public datasets and it outperforms state-of-the-art methods on a wide variety of activity categories.
arXiv Detail & Related papers (2021-12-20T17:00:27Z) - Using Language Model to Bootstrap Human Activity Recognition Ambient
Sensors Based in Smart Homes [2.336163487623381]
We propose two Natural Language Processing embedding methods to enhance LSTM-based structures in activity-sequences classification tasks.
Results indicate that this approach provides useful information, such as a sensor organization map.
Our tests show that the embeddings can be pretrained on different datasets than the target one, enabling transfer learning.
arXiv Detail & Related papers (2021-11-23T21:21:14Z) - Domain and Modality Gaps for LiDAR-based Person Detection on Mobile
Robots [91.01747068273666]
This paper studies existing LiDAR-based person detectors with a particular focus on mobile robot scenarios.
Experiments revolve around the domain gap between driving and mobile robot scenarios, as well as the modality gap between 3D and 2D LiDAR sensors.
Results provide practical insights into LiDAR-based person detection and facilitate informed decisions for relevant mobile robot designs and applications.
arXiv Detail & Related papers (2021-06-21T16:35:49Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
We propose a framework, named Semantics-aware Adaptive Knowledge Distillation Networks (SAKDN), to enhance action recognition in vision-sensor modality (videos)
The SAKDN uses multiple wearable-sensors as teacher modalities and uses RGB videos as student modality.
arXiv Detail & Related papers (2020-09-01T03:38:31Z) - Human Activity Recognition from Wearable Sensor Data Using
Self-Attention [2.9023633922848586]
We present a self-attention based neural network model for activity recognition from body-worn sensor data.
We performed experiments on four popular publicly available HAR datasets: PAMAP2, Opportunity, Skoda and USC-HAD.
Our model achieve significant performance improvement over recent state-of-the-art models in both benchmark test subjects and Leave-one-out-subject evaluation.
arXiv Detail & Related papers (2020-03-17T14:16:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.