論文の概要: Deep learning approaches to indoor wireless channel estimation for low-power communication
- arxiv url: http://arxiv.org/abs/2405.12427v1
- Date: Tue, 21 May 2024 00:36:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 14:38:05.044808
- Title: Deep learning approaches to indoor wireless channel estimation for low-power communication
- Title(参考訳): 低消費電力通信のための屋内無線チャネル推定のための深層学習手法
- Authors: Samrah Arif, Muhammad Arif Khan, Sabih Ur Rehman,
- Abstract要約: 本稿では,LP-IoT通信における高精度チャネル推定にRSSIを利用する,FCNNを用いた2つの低電力チャネル推定モデルを提案する。
我々のモデルAは平均二乗誤差(MSE)の99.02%の顕著な減少を示し、モデルBは現在の研究で設定されたベンチマークと比較して90.03%のMSEの減少を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the rapidly growing development of the Internet of Things (IoT) infrastructure, achieving reliable wireless communication is a challenge. IoT devices operate in diverse environments with common signal interference and fluctuating channel conditions. Accurate channel estimation helps adapt the transmission strategies to current conditions, ensuring reliable communication. Traditional methods, such as Least Squares (LS) and Minimum Mean Squared Error (MMSE) estimation techniques, often struggle to adapt to the diverse and complex environments typical of IoT networks. This research article delves into the potential of Deep Learning (DL) to enhance channel estimation, focusing on the Received Signal Strength Indicator (RSSI) metric - a critical yet challenging aspect due to its susceptibility to noise and environmental factors. This paper presents two Fully Connected Neural Networks (FCNNs)-based Low Power (LP-IoT) channel estimation models, leveraging RSSI for accurate channel estimation in LP-IoT communication. Our Model A exhibits a remarkable 99.02% reduction in Mean Squared Error (MSE), and Model B demonstrates a notable 90.03% MSE reduction compared to the benchmarks set by current studies. Additionally, the comparative studies of our model A with other DL-based techniques show significant efficiency in our estimation models.
- Abstract(参考訳): IoT(Internet of Things)インフラストラクチャが急速に発展する中で,信頼性の高い無線通信の実現が課題となっている。
IoTデバイスは、共通の信号干渉と変動するチャネル条件を持つ多様な環境で動作する。
正確なチャネル推定は、送信戦略を現在の状況に適応させ、信頼性の高い通信を保証するのに役立つ。
Least Squares (LS) や Minimum Mean Squared Error (MMSE) といった従来の手法は、IoTネットワークに典型的な多様な複雑な環境に適応するのに苦労することが多い。
本稿では, 受波信号強度指標(RSSI)測定値に着目し, チャネル推定能力を高めるための深層学習(DL)の可能性について検討する。
本稿では,LP-IoT通信における高精度チャネル推定にRSSIを利用する,FCNNを用いた2つの低電力チャネル推定モデルを提案する。
我々のモデルAは平均二乗誤差(MSE)の99.02%の顕著な減少を示し、モデルBは現在の研究で設定されたベンチマークと比較して90.03%のMSEの減少を示す。
さらに、我々のモデルAと他のDLベースの手法の比較研究は、我々の推定モデルにおいて大きな効率性を示している。
関連論文リスト
- Modeling of Time-varying Wireless Communication Channel with Fading and Shadowing [0.0]
本稿では,ディープラーニングニューラルネットワークと混合密度ネットワークモデルを組み合わせて,受信電力の条件付き確率密度関数を導出する手法を提案する。
経路損失とノイズを伴う中上フェーディングチャネルモデルと対数正規シャドーイングチャネルモデルの実験により、新しいアプローチは従来のディープラーニングベースチャネルモデルよりも統計的に正確で、高速で、より堅牢であることが示された。
論文 参考訳(メタデータ) (2024-05-13T21:30:50Z) - RSSI Estimation for Constrained Indoor Wireless Networks using ANN [0.0]
本研究では、ニューラルネットワーク(ANN)を用いた2つの異なるLP-IoT無線チャネル推定モデルを確立する。
いずれのモデルも、LP-IoT無線チャネルにおける推定誤差を低くすることで、LP-IoT通信を強化するために構築されている。
その結果,提案手法はチャネル推定において顕著な精度を達成し,MSEが8.29%,Sequenceモデルが9.46%,MSEが9.76%,MSEが8.29%向上した。
論文 参考訳(メタデータ) (2024-04-10T02:48:13Z) - Performance Analysis for Resource Constrained Decentralized Federated
Learning Over Wireless Networks [4.76281731053599]
分散連合学習(DFL)は、通信オーバーヘッドと中央サーバへの依存を著しく引き起こす可能性がある。
本研究では、無線ネットワーク上の異なる通信方式(デジタルおよびアナログ)を用いて、資源制約付きDFLの性能を分析し、通信効率を最適化する。
論文 参考訳(メタデータ) (2023-08-12T07:56:48Z) - Deep Learning-Based Synchronization for Uplink NB-IoT [72.86843435313048]
狭帯域モノのインターネット(NB-IoT)における狭帯域物理ランダムアクセスチャネル(NPRACH)のデバイス検出と到着時刻推定のためのニューラルネットワーク(NN)に基づくアルゴリズムを提案する。
導入されたNNアーキテクチャは、残余の畳み込みネットワークと、5Gニューラジオ(5G NR)仕様のプリアンブル構造に関する知識を利用する。
論文 参考訳(メタデータ) (2022-05-22T12:16:43Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
将来的な通信網は、異種無線デバイスの成長に対応するために、少ないスペクトルに対処する必要がある。
我々は、深層ニューラルネットワークに基づくマルチタスク学習フレームワークの可能性を利用して、変調と信号分類タスクを同時に学習する。
公共利用のための包括的ヘテロジニアス無線信号データセットを提供する。
論文 参考訳(メタデータ) (2022-02-26T14:51:02Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
大規模マルチインプット・マルチアウトプット(MIMO)システムにおけるダウンリンク(DL)チャネル推定について検討する。
一般的なアプローチは、チャネル硬化によって動機付けられた推定値として平均値を使用することである。
本稿では2つの新しい推定法を提案する。
論文 参考訳(メタデータ) (2021-09-06T13:42:32Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
そこでは,観測観測のために,既知の基地局とRIS位相制御行列を併用したアップリンクチャネル推定手法を提案する。
推定性能を向上し, トレーニングオーバーヘッドを低減するため, 深部展開法において, mmWaveチャネルの固有チャネル幅を生かした。
提案したディープ・アンフォールディング・ネットワーク・アーキテクチャは,トレーニングオーバーヘッドが比較的小さく,オンライン計算の複雑さも比較的小さく,最小二乗法(LS)法より優れていることが確認された。
論文 参考訳(メタデータ) (2021-07-27T06:57:56Z) - On the benefits of robust models in modulation recognition [53.391095789289736]
畳み込み層を用いたディープニューラルネットワーク(DNN)は、通信における多くのタスクにおいて最先端である。
画像分類のような他の領域では、DNNは敵の摂動に弱いことが示されている。
最新モデルの堅牢性をテストするための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-27T19:58:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。