NESTFUL: A Benchmark for Evaluating LLMs on Nested Sequences of API Calls
- URL: http://arxiv.org/abs/2409.03797v1
- Date: Wed, 4 Sep 2024 17:53:24 GMT
- Title: NESTFUL: A Benchmark for Evaluating LLMs on Nested Sequences of API Calls
- Authors: Kinjal Basu, Ibrahim Abdelaziz, Kelsey Bradford, Maxwell Crouse, Kiran Kate, Sadhana Kumaravel, Saurabh Goyal, Asim Munawar, Yara Rizk, Xin Wang, Luis Lastras, Pavan Kapanipathi,
- Abstract summary: We present NESTFUL, a benchmark to evaluate large language models (LLMs) on nested sequences of API calls.
Our results show that most models do not perform well on nested APIs in NESTFUL as compared to their performance on the simpler problem settings available in existing benchmarks.
- Score: 18.831512738668792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous agent applications powered by large language models (LLMs) have recently risen to prominence as effective tools for addressing complex real-world tasks. At their core, agentic workflows rely on LLMs to plan and execute the use of tools and external Application Programming Interfaces (APIs) in sequence to arrive at the answer to a user's request. Various benchmarks and leaderboards have emerged to evaluate an LLM's capabilities for tool and API use; however, most of these evaluations only track single or multiple isolated API calling capabilities. In this paper, we present NESTFUL, a benchmark to evaluate LLMs on nested sequences of API calls, i.e., sequences where the output of one API call is passed as input to a subsequent call. NESTFUL has a total of 300 human annotated samples divided into two types - executable and non-executable. The executable samples are curated manually by crawling Rapid-APIs whereas the non-executable samples are hand picked by human annotators from data synthetically generated using an LLM. We evaluate state-of-the-art LLMs with function calling abilities on NESTFUL. Our results show that most models do not perform well on nested APIs in NESTFUL as compared to their performance on the simpler problem settings available in existing benchmarks.
Related papers
- SEAL: Suite for Evaluating API-use of LLMs [1.2528321519119252]
SEAL is an end-to-end testbed designed to evaluate large language models in real-world API usage.
It standardizes existing benchmarks, integrates an agent system for testing API retrieval and planning, and addresses the instability of real-time APIs.
arXiv Detail & Related papers (2024-09-23T20:16:49Z) - Harnessing LLMs for API Interactions: A Framework for Classification and Synthetic Data Generation [0.0]
We propose a novel system that integrates Large Language Models (LLMs) for both classifying natural language inputs into corresponding API calls.
Our system allows users to invoke complex software functionalities through simple inputs, improving interaction efficiency and lowering the barrier to software utilization.
arXiv Detail & Related papers (2024-09-18T04:56:52Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - LLM+Reasoning+Planning for supporting incomplete user queries in presence of APIs [0.09374652839580183]
In practice, natural language task requests (user queries) are often incomplete, i.e., they may not contain all the information required by the APIs.
We leverage logical reasoning and classical AI planning along with an LLM for accurately answering user queries.
Our approach achieves over 95% success rate in most cases on a dataset containing complete and incomplete single goal and multi-goal queries.
arXiv Detail & Related papers (2024-05-21T01:16:34Z) - Ada-LEval: Evaluating long-context LLMs with length-adaptable benchmarks [76.43527940649939]
We introduce Ada-LEval, a benchmark for evaluating the long-context understanding of large language models (LLMs)
Ada-LEval includes two challenging subsets, TSort and BestAnswer, which enable a more reliable evaluation of LLMs' long context capabilities.
We evaluate 4 state-of-the-art closed-source API models and 6 open-source models with Ada-LEval.
arXiv Detail & Related papers (2024-04-09T17:30:48Z) - PPTC Benchmark: Evaluating Large Language Models for PowerPoint Task
Completion [96.47420221442397]
We introduce the PowerPoint Task Completion benchmark to assess the ability of Large Language Models to finish multi-turn, multi-modal instructions.
We also propose the PPTX-Match Evaluation System that evaluates if LLMs finish the instruction based on the prediction file rather than the label API sequence.
The results show that GPT-4 outperforms other LLMs with 75.1% accuracy in single-turn dialogue testing but faces challenges in completing entire sessions, achieving just 6% session accuracy.
arXiv Detail & Related papers (2023-11-03T08:06:35Z) - Reverse Chain: A Generic-Rule for LLMs to Master Multi-API Planning [8.96245399645571]
This paper introduces Reverse Chain'', a controllable, target-driven approach to empower Large Language Models with the capability to operate external APIs only via prompts.
To manage a controllable multi-function calling, Reverse Chain adopts a generic rule based on a backward reasoning process.
arXiv Detail & Related papers (2023-10-06T05:20:18Z) - ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world
APIs [104.37772295581088]
Open-source large language models (LLMs), e.g., LLaMA, remain significantly limited in tool-use capabilities.
We introduce ToolLLM, a general tool-usetuning encompassing data construction, model training, and evaluation.
We first present ToolBench, an instruction-tuning framework for tool use, which is constructed automatically using ChatGPT.
arXiv Detail & Related papers (2023-07-31T15:56:53Z) - Allies: Prompting Large Language Model with Beam Search [107.38790111856761]
In this work, we propose a novel method called ALLIES.
Given an input query, ALLIES leverages LLMs to iteratively generate new queries related to the original query.
By iteratively refining and expanding the scope of the original query, ALLIES captures and utilizes hidden knowledge that may not be directly through retrieval.
arXiv Detail & Related papers (2023-05-24T06:16:44Z) - Large Language Models are Strong Zero-Shot Retriever [89.16756291653371]
We propose a simple method that applies a large language model (LLM) to large-scale retrieval in zero-shot scenarios.
Our method, the Language language model as Retriever (LameR), is built upon no other neural models but an LLM.
arXiv Detail & Related papers (2023-04-27T14:45:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.