Benchmarking Fish Dataset and Evaluation Metric in Keypoint Detection -- Towards Precise Fish Morphological Assessment in Aquaculture Breeding
- URL: http://arxiv.org/abs/2405.12476v2
- Date: Sat, 1 Jun 2024 02:21:22 GMT
- Title: Benchmarking Fish Dataset and Evaluation Metric in Keypoint Detection -- Towards Precise Fish Morphological Assessment in Aquaculture Breeding
- Authors: Weizhen Liu, Jiayu Tan, Guangyu Lan, Ao Li, Dongye Li, Le Zhao, Xiaohui Yuan, Nanqing Dong,
- Abstract summary: We introduce FishPhenoKey, a comprehensive dataset comprising 23,331 high-resolution images spanning six fish species.
FishPhenoKey includes 22 phenotype-oriented annotations, enabling the capture of intricate morphological phenotypes.
We also propose a new evaluation metric, Percentage of Measured Phenotype.
- Score: 6.332060647845203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate phenotypic analysis in aquaculture breeding necessitates the quantification of subtle morphological phenotypes. Existing datasets suffer from limitations such as small scale, limited species coverage, and inadequate annotation of keypoints for measuring refined and complex morphological phenotypes of fish body parts. To address this gap, we introduce FishPhenoKey, a comprehensive dataset comprising 23,331 high-resolution images spanning six fish species. Notably, FishPhenoKey includes 22 phenotype-oriented annotations, enabling the capture of intricate morphological phenotypes. Motivated by the nuanced evaluation of these subtle morphologies, we also propose a new evaluation metric, Percentage of Measured Phenotype (PMP). It is designed to assess the accuracy of individual keypoint positions and is highly sensitive to the phenotypes measured using the corresponding keypoints. To enhance keypoint detection accuracy, we further propose a novel loss, Anatomically-Calibrated Regularization (ACR), that can be integrated into keypoint detection models, leveraging biological insights to refine keypoint localization. Our contributions set a new benchmark in fish phenotype analysis, addressing the challenges of precise morphological quantification and opening new avenues for research in sustainable aquaculture and genetic studies. Our dataset and code are available at https://github.com/WeizhenLiuBioinform/Fish-Phenotype-Detect.
Related papers
- NovoBench: Benchmarking Deep Learning-based De Novo Peptide Sequencing Methods in Proteomics [58.03989832372747]
We present the first unified benchmark NovoBench for emphde novo peptide sequencing.
It comprises diverse mass spectrum data, integrated models, and comprehensive evaluation metrics.
Recent methods, including DeepNovo, PointNovo, Casanovo, InstaNovo, AdaNovo and $pi$-HelixNovo are integrated into our framework.
arXiv Detail & Related papers (2024-06-16T08:23:21Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Lincoln's Annotated Spatio-Temporal Strawberry Dataset (LAST-Straw) [7.13465721388535]
We present a dataset of 3D point clouds of strawberry plants for two varieties, totalling 84 individual point clouds.
We focus on the end use of such tools - the extraction of biologically relevant phenotypes - to demonstrate a phenotyping pipeline on the dataset.
This comprises of the steps, including; segmentation, skeletonisation and tracking, and we detail how each stage facilitates the extraction of different phenotypes or provision of data insights.
arXiv Detail & Related papers (2024-03-01T14:44:05Z) - Prawn Morphometrics and Weight Estimation from Images using Deep
Learning for Landmark Localization [2.778518997767646]
We developed a novel approach to automate weight estimation and morphometric analysis using the black tiger prawn (Penaeus monodon) as a model crustacean.
For morphometric analyses, we utilized the detected landmarks to derive five important prawn traits.
Our experimental results demonstrate that the novel DL approach outperforms existing DL methods in terms of accuracy, robustness, and efficiency.
arXiv Detail & Related papers (2023-07-15T07:05:06Z) - Phylogeny-informed fitness estimation [58.720142291102135]
We propose phylogeny-informed fitness estimation, which exploits a population's phylogeny to estimate fitness evaluations.
Our results indicate that phylogeny-informed fitness estimation can mitigate the drawbacks of down-sampled lexicase.
This work serves as an initial step toward improving evolutionary algorithms by exploiting runtime phylogenetic analysis.
arXiv Detail & Related papers (2023-06-06T19:05:01Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - Visual Microfossil Identificationvia Deep Metric Learning [1.3199511198128897]
We apply metric learning to classifying planktic foraminifer shells on microscopic images.
We produce the first scientific visualisation of the phenotypic planktic foraminifer space.
We show that metric learning out-performs all published CNN-based state-of-the-art benchmarks in this domain.
arXiv Detail & Related papers (2021-12-17T13:00:37Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern images from the same developmental stage are compared.
labeling training data with precise stages is very time-consuming even for biologists.
We propose a deep two-step low-shot learning framework to accurately classify ISH images using limited training images.
arXiv Detail & Related papers (2020-10-20T06:06:06Z) - Mycorrhiza: Genotype Assignment usingPhylogenetic Networks [2.286041284499166]
We introduce Mycorrhiza, a machine learning approach for the genotype assignment problem.
Our algorithm makes use of phylogenetic networks to engineer features that encode the evolutionary relationships among samples.
Mycorrhiza yields particularly significant gains on datasets with a large average fixation index (FST) or deviation from the Hardy-Weinberg equilibrium.
arXiv Detail & Related papers (2020-10-14T02:36:27Z) - A Realistic Fish-Habitat Dataset to Evaluate Algorithms for Underwater
Visual Analysis [2.6476746128312194]
We present DeepFish as a benchmark suite with a large-scale dataset to train and test methods for several computer vision tasks.
The dataset consists of approximately 40 thousand images collected underwater from 20 greenhabitats in the marine-environments of tropical Australia.
Our experiments provide an in-depth analysis of the dataset characteristics, and the performance evaluation of several state-of-the-art approaches.
arXiv Detail & Related papers (2020-08-28T12:20:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.