論文の概要: Towards Detecting and Mitigating Cognitive Bias in Spoken Conversational Search
- arxiv url: http://arxiv.org/abs/2405.12480v2
- Date: Tue, 06 Aug 2024 20:42:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 00:01:52.945967
- Title: Towards Detecting and Mitigating Cognitive Bias in Spoken Conversational Search
- Title(参考訳): 音声対話検索における認知バイアスの検出と緩和に向けて
- Authors: Kaixin Ji, Sachin Pathiyan Cherumanal, Johanne R. Trippas, Danula Hettiachchi, Flora D. Salim, Falk Scholer, Damiano Spina,
- Abstract要約: 本稿では,情報探索,心理学,認知科学,ウェアラブルセンサの知見をもとに,地域社会における新たな会話を促す。
実験的な設計と設定のためのマルチモーダル機器と手法を含むフレームワークを提案する。
- 参考スコア(独自算出の注目度): 14.916529791823868
- License:
- Abstract: Instruments such as eye-tracking devices have contributed to understanding how users interact with screen-based search engines. However, user-system interactions in audio-only channels -- as is the case for Spoken Conversational Search (SCS) -- are harder to characterize, given the lack of instruments to effectively and precisely capture interactions. Furthermore, in this era of information overload, cognitive bias can significantly impact how we seek and consume information -- especially in the context of controversial topics or multiple viewpoints. This paper draws upon insights from multiple disciplines (including information seeking, psychology, cognitive science, and wearable sensors) to provoke novel conversations in the community. To this end, we discuss future opportunities and propose a framework including multimodal instruments and methods for experimental designs and settings. We demonstrate preliminary results as an example. We also outline the challenges and offer suggestions for adopting this multimodal approach, including ethical considerations, to assist future researchers and practitioners in exploring cognitive biases in SCS.
- Abstract(参考訳): 視線追跡装置のような機器は、ユーザーがスクリーンベースの検索エンジンとどのように相互作用するかを理解するのに役立っている。
しかし、音声のみのチャンネルにおけるユーザ・システム間通信は、音声会話検索(SCS)の場合と同様に、効果的かつ正確に対話をキャプチャする手段が欠如しているため、特徴付けが困難である。
さらに、情報過負荷の時代において、認知バイアスは情報を求めて消費する方法に大きな影響を与えます。
本稿では,情報探索,心理学,認知科学,ウェアラブルセンサなど複数の分野から洞察を得て,地域社会における新たな会話を促す。
そこで本稿では,将来の可能性について論じ,実験的な設計・設定のためのマルチモーダル・インスツルメンテーションや手法を含むフレームワークを提案する。
例として、予備的な結果を示す。
我々はまた、SCSにおける認知バイアスの探索において、将来の研究者や実践者を支援するために、倫理的考察を含む、このマルチモーダルアプローチを採用する上での課題と提案について概説する。
関連論文リスト
- Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - Interactive Counterfactual Exploration of Algorithmic Harms in Recommender Systems [3.990406494980651]
本研究では,レコメンデーションシステムにおけるアルゴリズム的害の影響を理解し,探索するための対話型ツールを提案する。
視覚化、反事実的説明、インタラクティブなモジュールを活用することで、ユーザは誤校正などのバイアスがレコメンデーションにどのように影響するかを調査できる。
論文 参考訳(メタデータ) (2024-09-10T23:58:27Z) - Modeling User Preferences via Brain-Computer Interfacing [54.3727087164445]
我々はBrain-Computer Interface技術を用いてユーザの好みを推測し、その注意力は視覚的コンテンツと感情的体験との関連性に相関する。
我々はこれらを,情報検索,生成モデルのパーソナライズされたステアリング,感情経験のクラウドソーシング人口推定など,関連するアプリケーションにリンクする。
論文 参考訳(メタデータ) (2024-05-15T20:41:46Z) - Supporting Experts with a Multimodal Machine-Learning-Based Tool for
Human Behavior Analysis of Conversational Videos [40.30407535831779]
そこで我々は,プロビデンス(Providence)を開発した。プロビデンス(Providence)は,専門家による形式的な研究から得られた設計上の考察に基づくビジュアルプログラミングツールである。
これにより、専門家はさまざまな機械学習アルゴリズムを組み合わせることで、コードを書くことなく人間の行動の手がかりを捉えることができる。
本研究は,会話の場面検索タスクの達成に要する認知負荷が少なく,ユーザビリティと満足度の高いアウトプットを示した。
論文 参考訳(メタデータ) (2024-02-17T00:27:04Z) - Enhancing HOI Detection with Contextual Cues from Large Vision-Language Models [56.257840490146]
ConCueは、HOI検出における視覚的特徴抽出を改善するための新しいアプローチである。
コンテクストキューをインスタンスと相互作用検出器の両方に統合するマルチトウワーアーキテクチャを用いたトランスフォーマーベースの特徴抽出モジュールを開発した。
論文 参考訳(メタデータ) (2023-11-26T09:11:32Z) - Re-mine, Learn and Reason: Exploring the Cross-modal Semantic
Correlations for Language-guided HOI detection [57.13665112065285]
ヒューマンオブジェクトインタラクション(HOI)検出は、コンピュータビジョンの課題である。
本稿では,構造化テキスト知識を組み込んだHOI検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-25T14:20:52Z) - Expanding the Role of Affective Phenomena in Multimodal Interaction
Research [57.069159905961214]
マルチモーダルインタラクション, 感情計算, 自然言語処理において, 選ばれたカンファレンスから16,000以上の論文を調査した。
本論文では,感情関連論文910を同定し,情緒現象の役割について分析した。
我々は、人間の社会的行動や認知状態の機械的理解を高めるために、AIシステムによって感情と感情の予測がどのように使用されるかについて、限られた研究結果を得た。
論文 参考訳(メタデータ) (2023-05-18T09:08:39Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - Empathetic Conversational Systems: A Review of Current Advances, Gaps,
and Opportunities [2.741266294612776]
多くの研究が共感の利点を認識し、共感を会話システムに取り入れ始めた。
本稿では,5つのレビュー次元を用いて,急速に成長するこの分野について検討する。
論文 参考訳(メタデータ) (2022-05-09T05:19:48Z) - A Survey on Conversational Recommender Systems [11.319431345375751]
会話レコメンデータシステム(CRS)は異なるアプローチを採用し、よりリッチなインタラクションをサポートする。
CRSに対する関心は、ここ数年で大幅に増加した。
この開発は主に自然言語処理の分野における著しい進歩によるものである。
論文 参考訳(メタデータ) (2020-04-01T18:00:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。