論文の概要: CLRKDNet: Speeding up Lane Detection with Knowledge Distillation
- arxiv url: http://arxiv.org/abs/2405.12503v1
- Date: Tue, 21 May 2024 05:20:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 14:18:37.219539
- Title: CLRKDNet: Speeding up Lane Detection with Knowledge Distillation
- Title(参考訳): CLRKDNet:知識蒸留による車線検出の高速化
- Authors: Weiqing Qi, Guoyang Zhao, Fulong Ma, Linwei Zheng, Ming Liu,
- Abstract要約: 本稿では,検出精度とリアルタイム性能のバランスをとる合理化モデルであるCLRKDNetを紹介する。
提案手法はCLRNetに匹敵する検出精度を維持しつつ,推論時間を最大60%削減する。
- 参考スコア(独自算出の注目度): 4.015241891536452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Road lanes are integral components of the visual perception systems in intelligent vehicles, playing a pivotal role in safe navigation. In lane detection tasks, balancing accuracy with real-time performance is essential, yet existing methods often sacrifice one for the other. To address this trade-off, we introduce CLRKDNet, a streamlined model that balances detection accuracy with real-time performance. The state-of-the-art model CLRNet has demonstrated exceptional performance across various datasets, yet its computational overhead is substantial due to its Feature Pyramid Network (FPN) and muti-layer detection head architecture. Our method simplifies both the FPN structure and detection heads, redesigning them to incorporate a novel teacher-student distillation process alongside a newly introduced series of distillation losses. This combination reduces inference time by up to 60% while maintaining detection accuracy comparable to CLRNet. This strategic balance of accuracy and speed makes CLRKDNet a viable solution for real-time lane detection tasks in autonomous driving applications.
- Abstract(参考訳): 道路車線は、インテリジェントな車両における視覚知覚システムの不可欠な要素であり、安全なナビゲーションにおいて重要な役割を担っている。
レーン検出タスクでは、精度とリアルタイムのパフォーマンスのバランスが不可欠である。
このトレードオフに対処するために,検出精度とリアルタイム性能のバランスをとる合理化モデルであるCLRKDNetを導入する。
最新技術モデルCLRNetは、さまざまなデータセットで例外的なパフォーマンスを示してきたが、その計算オーバーヘッドは、FPN(Feature Pyramid Network)とミューティ層検出ヘッドアーキテクチャ(muti-layer detection head architecture)のため、かなり大きい。
提案手法はFPN構造と検出ヘッドの両方を単純化し, 新たに導入された一連の蒸留損失と合わせて, 教師と学生の新たな蒸留プロセスを統合するよう再設計した。
この組み合わせにより、CLRNetに匹敵する検出精度を維持しながら、推論時間を最大60%削減できる。
この精度とスピードの戦略的バランスにより、CLRKDNetは自律運転アプリケーションにおけるリアルタイム車線検出タスクの実行可能なソリューションとなる。
関連論文リスト
- Fast-COS: A Fast One-Stage Object Detector Based on Reparameterized Attention Vision Transformer for Autonomous Driving [3.617580194719686]
本稿では、シーンを駆動するための新しい単一ステージオブジェクト検出フレームワークであるFast-COSを紹介する。
RAViTはImageNet-1Kデータセットで81.4%のTop-1精度を達成した。
主要なモデルの効率を上回り、最大75.9%のGPU推論速度とエッジデバイスでの1.38のスループットを提供する。
論文 参考訳(メタデータ) (2025-02-11T09:54:09Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
本稿では,変化領域を正確に推定するために,リッチな文脈情報を利用する効率的な変化検出フレームワークELGC-Netを提案する。
提案するELGC-Netは、リモートセンシング変更検出ベンチマークにおいて、最先端の性能を新たに設定する。
また,ELGC-Net-LWも導入した。
論文 参考訳(メタデータ) (2024-03-26T17:46:25Z) - CLRmatchNet: Enhancing Curved Lane Detection with Deep Matching Process [0.6144680854063939]
レーン検出は、安全なナビゲーションを確保するために重要なデータを提供することによって、自動運転において重要な役割を果たす。
現代のアルゴリズムはアンカーベースの検出器に依存しており、ラベル割り当てプロセスによってトレーニング検出を正または負のインスタンスに分類する。
我々の研究は、ラベル割り当てプロセスを改善することを目的とした、ディープラーニングサブモジュールベースのアプローチであるMatchNetを紹介した。
論文 参考訳(メタデータ) (2023-09-26T19:05:18Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
我々は,エンコーダ・デコーダ構造上の表面欠陥を簡易に検出するためのGCANet(Global Context Aggregation Network)を開発した。
まず、軽量バックボーンの上部層に新しいトランスフォーマーエンコーダを導入し、DSA(Depth-wise Self-Attention)モジュールを通じてグローバルなコンテキスト情報をキャプチャする。
3つの公開欠陥データセットの実験結果から,提案したネットワークは,他の17の最先端手法と比較して,精度と実行効率のトレードオフを良好に達成できることが示された。
論文 参考訳(メタデータ) (2023-09-22T06:19:11Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Rethinking Voxelization and Classification for 3D Object Detection [68.8204255655161]
LiDARポイントクラウドからの3Dオブジェクト検出の主な課題は、ネットワークの信頼性に影響を与えることなく、リアルタイムのパフォーマンスを実現することである。
本稿では,高速な動的ボキセラライザを実装することにより,ネットワークの推論速度と精度を同時に向上するソリューションを提案する。
さらに,予測対象を分類し,偽検出対象をフィルタリングする軽量検出サブヘッドモデルを提案する。
論文 参考訳(メタデータ) (2023-01-10T16:22:04Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
将来を予測する能力を備えたモデルを提供し、ストリーミング知覚の結果を大幅に改善する。
本稿では,複数の速度を駆動するシーンについて考察し,VasAP(Velocity-Awared streaming AP)を提案する。
本手法は,Argoverse-HDデータセットの最先端性能を実現し,SAPとVsAPをそれぞれ4.7%,VsAPを8.2%改善する。
論文 参考訳(メタデータ) (2022-07-21T12:03:02Z) - Simple Training Strategies and Model Scaling for Object Detection [38.27709720726833]
RetinaNetおよびRCNN検出器を用いたバニラResNet-FPNバックボーンのベンチマークを行った。
バニラ検出器は精度が7.7%向上し、速度は30%速くなった。
我々の最大のRCNN-RSモデルは、ResNet152-FPNバックボーンで52.9%AP、SpineNet143Lバックボーンで53.6%APを達成した。
論文 参考訳(メタデータ) (2021-06-30T18:41:47Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
我々は,LiDARをベースとした効率的なエンドツーエンドナビゲーションフレームワークを提案する。
本稿では,スパース畳み込みカーネル最適化とハードウェア対応モデル設計に基づくFast-LiDARNetを提案する。
次に,単一の前方通過のみから予測の不確かさを直接推定するハイブリッド・エビデンシャル・フュージョンを提案する。
論文 参考訳(メタデータ) (2021-05-20T17:52:37Z) - A Unified Light Framework for Real-time Fault Detection of Freight Train
Images [16.721758280029302]
貨物列車のリアルタイム故障検出は、鉄道輸送の安全と最適運転を保証する上で重要な役割を担っている。
深層学習に基づくアプローチの有望な結果にもかかわらず、貨物列車画像におけるこれらの断層検出器の性能は精度と効率の両立には程遠い。
本稿では,リソース要求の少ないリアルタイム動作をサポートしながら,検出精度を向上させるための統一光フレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-31T05:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。