Unveiling Online Conspiracy Theorists: a Text-Based Approach and Characterization
- URL: http://arxiv.org/abs/2405.12566v1
- Date: Tue, 21 May 2024 08:07:38 GMT
- Title: Unveiling Online Conspiracy Theorists: a Text-Based Approach and Characterization
- Authors: Alessandra Recordare, Guglielmo Cola, Tiziano Fagni, Maurizio Tesconi,
- Abstract summary: We conducted a comprehensive analysis of two distinct X datasets: one comprising users with conspiracy theorizing patterns and another made of users lacking such tendencies.
Our findings reveal marked differences in the lexicon and language adopted by conspiracy theorists with respect to other users.
We developed a machine learning classifier capable of identifying users who propagate conspiracy theories based on a rich set of 871 features.
- Score: 42.242551342068374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In today's digital landscape, the proliferation of conspiracy theories within the disinformation ecosystem of online platforms represents a growing concern. This paper delves into the complexities of this phenomenon. We conducted a comprehensive analysis of two distinct X (formerly known as Twitter) datasets: one comprising users with conspiracy theorizing patterns and another made of users lacking such tendencies and thus serving as a control group. The distinguishing factors between these two groups are explored across three dimensions: emotions, idioms, and linguistic features. Our findings reveal marked differences in the lexicon and language adopted by conspiracy theorists with respect to other users. We developed a machine learning classifier capable of identifying users who propagate conspiracy theories based on a rich set of 871 features. The results demonstrate high accuracy, with an average F1 score of 0.88. Moreover, this paper unveils the most discriminating characteristics that define conspiracy theory propagators.
Related papers
- What distinguishes conspiracy from critical narratives? A computational analysis of oppositional discourse [42.0918839418817]
We propose a novel topic-agnostic annotation scheme that distinguishes between conspiracies and critical texts.
We also contribute with the multilingual XAI-DisInfodemics corpus (English and Spanish), which contains a high-quality annotation of Telegram messages.
arXiv Detail & Related papers (2024-07-15T14:18:47Z) - Classifying Conspiratorial Narratives At Scale: False Alarms and Erroneous Connections [4.594855794205588]
This work establishes a general scheme for classifying discussions related to conspiracy theories.
We leverage human-labeled ground truth to train a BERT-based model for classifying online CTs.
We present the first large-scale classification study using posts from the most active conspiracy-related Reddit forums.
arXiv Detail & Related papers (2024-03-29T20:29:12Z) - The Anatomy of Conspirators: Unveiling Traits using a Comprehensive
Twitter Dataset [0.0]
We present a novel methodology for constructing a Twitter dataset that encompasses accounts engaged in conspiracy-related activities throughout the year 2022.
This comprehensive collection effort yielded a total of 15K accounts and 37M tweets extracted from their timelines.
We conduct a comparative analysis of the two groups across three dimensions: topics, profiles, and behavioral characteristics.
arXiv Detail & Related papers (2023-08-29T09:35:23Z) - Stable Bias: Analyzing Societal Representations in Diffusion Models [72.27121528451528]
We propose a new method for exploring the social biases in Text-to-Image (TTI) systems.
Our approach relies on characterizing the variation in generated images triggered by enumerating gender and ethnicity markers in the prompts.
We leverage this method to analyze images generated by 3 popular TTI systems and find that while all of their outputs show correlations with US labor demographics, they also consistently under-represent marginalized identities to different extents.
arXiv Detail & Related papers (2023-03-20T19:32:49Z) - Codes, Patterns and Shapes of Contemporary Online Antisemitism and
Conspiracy Narratives -- an Annotation Guide and Labeled German-Language
Dataset in the Context of COVID-19 [0.0]
Antisemitic and conspiracy theory content on the Internet makes data-driven algorithmic approaches essential.
We develop an annotation guide for antisemitic and conspiracy theory online content in the context of the COVID-19 pandemic.
We provide working definitions, including specific forms of antisemitism such as encoded and post-Holocaust antisemitism.
arXiv Detail & Related papers (2022-10-13T10:32:39Z) - Rumor Detection with Self-supervised Learning on Texts and Social Graph [101.94546286960642]
We propose contrastive self-supervised learning on heterogeneous information sources, so as to reveal their relations and characterize rumors better.
We term this framework as Self-supervised Rumor Detection (SRD)
Extensive experiments on three real-world datasets validate the effectiveness of SRD for automatic rumor detection on social media.
arXiv Detail & Related papers (2022-04-19T12:10:03Z) - Where the Earth is flat and 9/11 is an inside job: A comparative
algorithm audit of conspiratorial information in web search results [62.997667081978825]
We examine the distribution of conspiratorial information in search results across five search engines: Google, Bing, DuckDuckGo, Yahoo and Yandex.
We find that all search engines except Google consistently displayed conspiracy-promoting results and returned links to conspiracy-dedicated websites in their top results.
Most conspiracy-promoting results came from social media and conspiracy-dedicated websites while conspiracy-debunking information was shared by scientific websites and, to a lesser extent, legacy media.
arXiv Detail & Related papers (2021-12-02T14:29:21Z) - Robustness Disparities in Commercial Face Detection [72.25318723264215]
We present the first of its kind detailed benchmark of the robustness of three such systems: Amazon Rekognition, Microsoft Azure, and Google Cloud Platform.
We generally find that photos of individuals who are older, masculine presenting, of darker skin type, or have dim lighting are more susceptible to errors than their counterparts in other identities.
arXiv Detail & Related papers (2021-08-27T21:37:16Z) - The Truth is Out There: Investigating Conspiracy Theories in Text
Generation [66.01545519772527]
We investigate the propensity for language models to generate conspiracy theory text.
Our study focuses on testing these models for the elicitation of conspiracy theories.
We introduce a new dataset consisting of conspiracy theory topics, machine-generated conspiracy theories, and human-written conspiracy theories.
arXiv Detail & Related papers (2021-01-02T05:47:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.