Mitigating Overconfidence in Out-of-Distribution Detection by Capturing Extreme Activations
- URL: http://arxiv.org/abs/2405.12658v1
- Date: Tue, 21 May 2024 10:14:50 GMT
- Title: Mitigating Overconfidence in Out-of-Distribution Detection by Capturing Extreme Activations
- Authors: Mohammad Azizmalayeri, Ameen Abu-Hanna, Giovanni CinĂ ,
- Abstract summary: "Overconfidence" is an intrinsic property of certain neural network architectures, leading to poor OOD detection.
We measure extreme activation values in the penultimate layer of neural networks and then leverage this proxy of overconfidence to improve on several OOD detection baselines.
Compared to the baselines, our method often grants substantial improvements, with double-digit increases in OOD detection.
- Score: 1.8531577178922987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting out-of-distribution (OOD) instances is crucial for the reliable deployment of machine learning models in real-world scenarios. OOD inputs are commonly expected to cause a more uncertain prediction in the primary task; however, there are OOD cases for which the model returns a highly confident prediction. This phenomenon, denoted as "overconfidence", presents a challenge to OOD detection. Specifically, theoretical evidence indicates that overconfidence is an intrinsic property of certain neural network architectures, leading to poor OOD detection. In this work, we address this issue by measuring extreme activation values in the penultimate layer of neural networks and then leverage this proxy of overconfidence to improve on several OOD detection baselines. We test our method on a wide array of experiments spanning synthetic data and real-world data, tabular and image datasets, multiple architectures such as ResNet and Transformer, different training loss functions, and include the scenarios examined in previous theoretical work. Compared to the baselines, our method often grants substantial improvements, with double-digit increases in OOD detection AUC, and it does not damage performance in any scenario.
Related papers
- The Best of Both Worlds: On the Dilemma of Out-of-distribution Detection [75.65876949930258]
Out-of-distribution (OOD) detection is essential for model trustworthiness.
We show that the superior OOD detection performance of state-of-the-art methods is achieved by secretly sacrificing the OOD generalization ability.
arXiv Detail & Related papers (2024-10-12T07:02:04Z) - Rethinking Out-of-Distribution Detection on Imbalanced Data Distribution [38.844580833635725]
We present a training-time regularization technique to mitigate the bias and boost imbalanced OOD detectors across architecture designs.
Our method translates into consistent improvements on the representative CIFAR10-LT, CIFAR100-LT, and ImageNet-LT benchmarks.
arXiv Detail & Related papers (2024-07-23T12:28:59Z) - Distilling the Unknown to Unveil Certainty [66.29929319664167]
Out-of-distribution (OOD) detection is essential in identifying test samples that deviate from the in-distribution (ID) data upon which a standard network is trained.
This paper introduces OOD knowledge distillation, a pioneering learning framework applicable whether or not training ID data is available.
arXiv Detail & Related papers (2023-11-14T08:05:02Z) - NECO: NEural Collapse Based Out-of-distribution detection [2.4958897155282282]
We introduce NECO, a novel post-hoc method for OOD detection.
Our experiments demonstrate that NECO achieves both small and large-scale OOD detection tasks.
We provide a theoretical explanation for the effectiveness of our method in OOD detection.
arXiv Detail & Related papers (2023-10-10T17:53:36Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Can Pre-trained Networks Detect Familiar Out-of-Distribution Data? [37.36999826208225]
We study the effect of PT-OOD on the OOD detection performance of pre-trained networks.
We find that the low linear separability of PT-OOD in the feature space heavily degrades the PT-OOD detection performance.
We propose a unique solution to large-scale pre-trained models: Leveraging powerful instance-by-instance discriminative representations of pre-trained models.
arXiv Detail & Related papers (2023-10-02T02:01:00Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - ReAct: Out-of-distribution Detection With Rectified Activations [20.792140933660075]
Out-of-distribution (OOD) detection has received much attention lately due to its practical importance.
One of the primary challenges is that models often produce highly confident predictions on OOD data.
We propose ReAct--a simple and effective technique for reducing model overconfidence on OOD data.
arXiv Detail & Related papers (2021-11-24T21:02:07Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
Deep neural networks are known to produce highly overconfident predictions on out-of-distribution (OOD) data.
In this paper we propose a novel method where from first principles we combine a certifiable OOD detector with a standard classifier into an OOD aware classifier.
In this way we achieve the best of two worlds: certifiably adversarially robust OOD detection, even for OOD samples close to the in-distribution, without loss in prediction accuracy and close to state-of-the-art OOD detection performance for non-manipulated OOD data.
arXiv Detail & Related papers (2021-06-08T11:40:49Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.