論文の概要: Multi-Subject Personalization
- arxiv url: http://arxiv.org/abs/2405.12742v1
- Date: Tue, 21 May 2024 12:53:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 13:19:55.436323
- Title: Multi-Subject Personalization
- Title(参考訳): マルチオブジェクトパーソナライゼーション
- Authors: Arushi Jain, Shubham Paliwal, Monika Sharma, Vikram Jamwal, Lovekesh Vig,
- Abstract要約: 課題のいくつかを軽減するために,MSP(Multi-Subject Personalization)を提案する。
安定拡散法を用いてMSPを実装し,他のテキスト・画像モデルに対するアプローチを評価する。
- 参考スコア(独自算出の注目度): 13.239661107392324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Creative story illustration requires a consistent interplay of multiple characters or objects. However, conventional text-to-image models face significant challenges while producing images featuring multiple personalized subjects. For example, they distort the subject rendering, or the text descriptions fail to render coherent subject interactions. We present Multi-Subject Personalization (MSP) to alleviate some of these challenges. We implement MSP using Stable Diffusion and assess our approach against other text-to-image models, showcasing its consistent generation of good-quality images representing intended subjects and interactions.
- Abstract(参考訳): 創造的なストーリーイラストレーションには、複数の文字やオブジェクトの一貫したインタープレイが必要です。
しかし、従来のテキスト・ツー・イメージモデルは、複数のパーソナライズされた被写体を特徴とする画像を作成しながら、重大な課題に直面している。
例えば、被写体レンダリングを歪ませたり、テキスト記述が一貫性のある被写体インタラクションをレンダリングできないりする。
課題のいくつかを軽減するために,MSP(Multi-Subject Personalization)を提案する。
我々は、安定拡散を用いてMSPを実装し、他のテキスト・画像モデルに対して我々のアプローチを評価し、目的と相互作用を表す良質な画像の一貫性のある生成を示す。
関連論文リスト
- MS-Diffusion: Multi-subject Zero-shot Image Personalization with Layout Guidance [6.4680449907623006]
本研究では,マルチオブジェクトを用いたレイアウト誘導ゼロショット画像パーソナライズのためのMS-Diffusionフレームワークを提案する。
提案した多目的クロスアテンションオーケストラは、テキストの制御を保ちながら、オブジェクト間コンポジションを編成する。
論文 参考訳(メタデータ) (2024-06-11T12:32:53Z) - Many-to-many Image Generation with Auto-regressive Diffusion Models [59.5041405824704]
本稿では,与えられた画像集合から関連画像系列を生成可能な多対多画像生成のためのドメイン汎用フレームワークを提案する。
我々は,25個の相互接続された画像を含む12Mの合成マルチイメージサンプルを含む,新しい大規模マルチイメージデータセットMISを提案する。
我々はM2Mを学習し、M2Mは多対多生成のための自己回帰モデルであり、各画像は拡散フレームワーク内でモデル化される。
論文 参考訳(メタデータ) (2024-04-03T23:20:40Z) - Be Yourself: Bounded Attention for Multi-Subject Text-to-Image Generation [60.943159830780154]
本稿では,サンプリングプロセスにおける情報フローをバウンドする訓練不要な手法である境界注意法を紹介する。
提案手法は,与えられたプロンプトとレイアウトの整合性を向上する複数の主題の生成に有効であることを示す。
論文 参考訳(メタデータ) (2024-03-25T17:52:07Z) - Training-Free Consistent Text-to-Image Generation [80.4814768762066]
テキスト・ツー・イメージ・モデルは様々なプロンプトで同じ主題を表現できる。
既存のアプローチは、特定のユーザが提供する主題を記述する新しい単語を教えるためにモデルを微調整する。
本研究では、事前学習モデルの内部アクティベーションを共有することによって、一貫した主題生成を可能にする、トレーニング不要なアプローチであるConsiStoryを提案する。
論文 参考訳(メタデータ) (2024-02-05T18:42:34Z) - Cones 2: Customizable Image Synthesis with Multiple Subjects [50.54010141032032]
本研究では,特定の対象を効率的に表現する方法と,異なる対象を適切に構成する方法について検討する。
クロスアテンションマップ内のアクティベーションを修正することにより、レイアウトはイメージ内の異なる被写体の位置を指定して分離する。
論文 参考訳(メタデータ) (2023-05-30T18:00:06Z) - Learning to Model Multimodal Semantic Alignment for Story Visualization [58.16484259508973]
ストーリービジュアライゼーションは、複数文のストーリーで各文をナレーションする一連の画像を生成することを目的としている。
現在の作業は、その固定されたアーキテクチャと入力モダリティの多様性のため、セマンティックなミスアライメントの問題に直面している。
GANに基づく生成モデルにおいて,テキストと画像表現のセマンティックアライメントを学習し,それらのセマンティックレベルを一致させる方法について検討する。
論文 参考訳(メタデータ) (2022-11-14T11:41:44Z) - Word-Level Fine-Grained Story Visualization [58.16484259508973]
ストーリービジュアライゼーションは、動的シーンやキャラクターをまたいだグローバルな一貫性を備えた多文ストーリーで各文をナレーションする一連の画像を生成することを目的としている。
現在の作業は画像の品質と一貫性に苦慮しており、追加のセマンティック情報や補助的なキャプションネットワークに依存している。
まず,全ての物語文からの単語情報を取り入れた新しい文表現を導入し,不整合問題を緩和する。
そこで本稿では,画像の質とストーリーの整合性を改善するために,融合機能を備えた新たな識別器を提案する。
論文 参考訳(メタデータ) (2022-08-03T21:01:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。