論文の概要: Cross-spectral Gated-RGB Stereo Depth Estimation
- arxiv url: http://arxiv.org/abs/2405.12759v1
- Date: Tue, 21 May 2024 13:10:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 13:19:55.409308
- Title: Cross-spectral Gated-RGB Stereo Depth Estimation
- Title(参考訳): クロススペクトルGated-RGBステレオ深さ推定
- Authors: Samuel Brucker, Stefanie Walz, Mario Bijelic, Felix Heide,
- Abstract要約: ゲート付きカメラがシーンを照らし、シーンのタイムゲートのインパルスを捉えます。
本稿では,これらのマルチモーダルな多視点深度キューを活用可能な新しいステレオ深度推定法を提案する。
提案手法は, 蓄積したLiDAR地盤の100~220mの範囲において, 次の最良既存手法よりも39%高い精度で高精度な深度を実現する。
- 参考スコア(独自算出の注目度): 34.31592077757453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gated cameras flood-illuminate a scene and capture the time-gated impulse response of a scene. By employing nanosecond-scale gates, existing sensors are capable of capturing mega-pixel gated images, delivering dense depth improving on today's LiDAR sensors in spatial resolution and depth precision. Although gated depth estimation methods deliver a million of depth estimates per frame, their resolution is still an order below existing RGB imaging methods. In this work, we combine high-resolution stereo HDR RCCB cameras with gated imaging, allowing us to exploit depth cues from active gating, multi-view RGB and multi-view NIR sensing -- multi-view and gated cues across the entire spectrum. The resulting capture system consists only of low-cost CMOS sensors and flood-illumination. We propose a novel stereo-depth estimation method that is capable of exploiting these multi-modal multi-view depth cues, including the active illumination that is measured by the RCCB camera when removing the IR-cut filter. The proposed method achieves accurate depth at long ranges, outperforming the next best existing method by 39% for ranges of 100 to 220m in MAE on accumulated LiDAR ground-truth. Our code, models and datasets are available at https://light.princeton.edu/gatedrccbstereo/ .
- Abstract(参考訳): ゲート付きカメラがシーンを照らし、シーンのタイムゲートのインパルスを捉えます。
ナノ秒スケールのゲートを使用することで、既存のセンサーはメガピクセルのゲート画像をキャプチャでき、現在のLiDARセンサーの深度を空間解像度と深度精度で向上させることができる。
ゲート深度推定法はフレーム毎に100万の深さ推定を行うが、その解像度は既存のRGB画像法よりは低い。
本研究では,高解像度のステレオHDR RCCBカメラとゲートイメージングを組み合わせることで,アクティブゲーティング,マルチビューRGB,マルチビューNIRセンシングから,スペクトル全体にわたるマルチビューおよびゲートキューの奥行きを活用できる。
得られたキャプチャシステムは、低コストのCMOSセンサーとフラッドイルミネーションのみで構成されている。
IRカットフィルタを除去する際,RCCBカメラが計測する能動的照明を含む,これらの多モード多視点深度キューを活用可能な新しいステレオ深度推定法を提案する。
提案手法は, 蓄積したLiDAR地盤の100~220mの範囲において, 次の最良既存手法よりも39%高い精度で高精度な深度を実現する。
私たちのコード、モデル、データセットはhttps://light.princeton.edu/gatedrccbstereo/で利用可能です。
関連論文リスト
- RGB Guided ToF Imaging System: A Survey of Deep Learning-based Methods [30.34690112905212]
RGBカメラをToFイメージングシステムに統合することは、現実世界を知覚するための重要な技術となっている。
本稿では, ネットワーク構造, 学習戦略, 評価指標, ベンチマークデータセット, 客観的関数など, RGBガイドによるToFイメージングに関する研究を包括的にレビューする。
論文 参考訳(メタデータ) (2024-05-16T17:59:58Z) - Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
カラー誘導DSRのためのSymmetric Uncertainty-aware Feature Transmission (SUFT)を提案する。
本手法は最先端の手法と比較して優れた性能を実現する。
論文 参考訳(メタデータ) (2023-06-01T06:35:59Z) - Shakes on a Plane: Unsupervised Depth Estimation from Unstabilized
Photography [54.36608424943729]
2秒で取得した12メガピクセルのRAWフレームの「長バースト」では,自然手震動のみからの視差情報で高品質のシーン深度を回復できることが示されている。
我々は、長時間バーストデータにニューラルRGB-D表現を適合させるテスト時間最適化手法を考案し、シーン深度とカメラモーションを同時に推定する。
論文 参考訳(メタデータ) (2022-12-22T18:54:34Z) - Non-learning Stereo-aided Depth Completion under Mis-projection via
Selective Stereo Matching [0.5067618621449753]
一対のステレオ画像で導かれる光検出・測度センサ(LiDAR)を用いて捉えたスパース深度マップの非学習深度補完法を提案する。
提案手法は, 平均絶対誤差(MAE)を0.65倍に減らし, 従来よりも約2倍の精度で推定できることを示した。
論文 参考訳(メタデータ) (2022-10-04T07:46:56Z) - DELTAR: Depth Estimation from a Light-weight ToF Sensor and RGB Image [39.389538555506256]
我々は,高分解能かつ高精度な深度測定機能を備えた軽量ToFセンサを実現する新しい手法であるDELTARを提案する。
DELTARの中核として、深度分布用にカスタマイズされた特徴抽出器と注意に基づくニューラルアーキテクチャを提案し、色とToF領域からの情報を効率的に融合させる。
実験により,提案手法は深度分解能と深度超解像のために設計された既存のフレームワークよりも精度が高く,コモディティレベルのRGB-Dセンサで同等の性能が得られることが示された。
論文 参考訳(メタデータ) (2022-09-27T13:11:37Z) - Unsupervised Visible-light Images Guided Cross-Spectrum Depth Estimation
from Dual-Modality Cameras [33.77748026254935]
クロススペクトル深度推定は、対のデュアルスペクトル画像を用いて、すべての照明条件で深度マップを提供することを目的としている。
本稿では,教師なし可視光画像ガイド型クロススペクトル(熱・可視光,略してTIR-VIS)の奥行き推定フレームワークを提案する。
提案手法は,既存手法と比較して性能が向上する。
論文 参考訳(メタデータ) (2022-04-30T12:58:35Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
RGB-D Salient Object Detection (SOD) のための新しいマルチタスク・マルチモーダルフィルタトランス (MMFT) ネットワークを提案する。
具体的には、深度推定、健全な物体検出、輪郭推定の3つの相補的なタスクを統合する。マルチタスク機構は、タスク認識の特徴を補助タスクから学習するためのモデルを促進する。
実験の結果、複数のデータセット上での深度に基づくRGB-D SOD法をはるかに上回るだけでなく、高品質の深度マップと塩分濃度を同時に正確に予測できることがわかった。
論文 参考訳(メタデータ) (2022-03-09T17:20:18Z) - Wild ToFu: Improving Range and Quality of Indirect Time-of-Flight Depth
with RGB Fusion in Challenging Environments [56.306567220448684]
本稿では,ノイズの多い生のI-ToF信号とRGB画像を用いた学習に基づくエンド・ツー・エンドの深度予測ネットワークを提案する。
最終深度マップでは,ベースラインアプローチと比較して40%以上のRMSE改善が見られた。
論文 参考訳(メタデータ) (2021-12-07T15:04:14Z) - Gated2Gated: Self-Supervised Depth Estimation from Gated Images [22.415893281441928]
ゲーテッドカメラは、高解像度の3D深度でLiDARセンサーをスキャンする代替品として有望だ。
そこで本研究では,ゲート強度プロファイルと時間的一貫性をトレーニング信号として用いた完全自己教師型深度推定手法を提案する。
論文 参考訳(メタデータ) (2021-12-04T19:47:38Z) - Towards Fast and Accurate Real-World Depth Super-Resolution: Benchmark
Dataset and Baseline [48.69396457721544]
深度写像スーパーリゾリューション(SR)の研究を促進するために,RGB-D-Dという大規模データセットを構築した。
本稿では、RGB画像から高周波成分を適応的に分解して深度マップSRを導出する高速深度マップ超解像(FDSR)ベースラインを提供する。
実世界のLR深度マップでは、より明確な境界を持つより正確なHR深度マップを作成でき、ある程度の精度で深度値誤差を補正できる。
論文 参考訳(メタデータ) (2021-04-13T13:27:26Z) - Depth Sensing Beyond LiDAR Range [84.19507822574568]
小型の視野カメラを用いた3カメラシステムを提案する。
我々のシステムは、計量深度を計算するための新しいアルゴリズムとともに、完全な事前校正を必要としない。
遠距離のシーンや物体に対して、事実上許容できる精度で密集した深度マップを出力することができる。
論文 参考訳(メタデータ) (2020-04-07T00:09:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。