論文の概要: Large Language Models Meet NLP: A Survey
- arxiv url: http://arxiv.org/abs/2405.12819v1
- Date: Tue, 21 May 2024 14:24:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 13:00:17.737546
- Title: Large Language Models Meet NLP: A Survey
- Title(参考訳): 大規模言語モデルとNLP: 調査
- Authors: Libo Qin, Qiguang Chen, Xiachong Feng, Yang Wu, Yongheng Zhang, Yinghui Li, Min Li, Wanxiang Che, Philip S. Yu,
- Abstract要約: 大規模言語モデル(LLM)は自然言語処理(NLP)タスクにおいて印象的な機能を示している。
本研究は,以下の課題を探求することによって,このギャップに対処することを目的とする。
- 参考スコア(独自算出の注目度): 79.74450825763851
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While large language models (LLMs) like ChatGPT have shown impressive capabilities in Natural Language Processing (NLP) tasks, a systematic investigation of their potential in this field remains largely unexplored. This study aims to address this gap by exploring the following questions: (1) How are LLMs currently applied to NLP tasks in the literature? (2) Have traditional NLP tasks already been solved with LLMs? (3) What is the future of the LLMs for NLP? To answer these questions, we take the first step to provide a comprehensive overview of LLMs in NLP. Specifically, we first introduce a unified taxonomy including (1) parameter-frozen application and (2) parameter-tuning application to offer a unified perspective for understanding the current progress of LLMs in NLP. Furthermore, we summarize the new frontiers and the associated challenges, aiming to inspire further groundbreaking advancements. We hope this work offers valuable insights into the {potential and limitations} of LLMs in NLP, while also serving as a practical guide for building effective LLMs in NLP.
- Abstract(参考訳): ChatGPTのような大規模言語モデル(LLM)は、自然言語処理(NLP)タスクにおいて顕著な能力を示してきたが、この分野におけるその可能性に関する体系的な調査は、まだ明らかになっていない。
本研究の目的は,(1) LLMがNLPタスクに現在どのように適用されているか,という問いに答えることで,このギャップに対処することにある。
2)従来のNLPタスクはすでにLLMで解決されているか?
(3)NLPのLCMは今後どうなるのか?
これらの疑問に答えるために,我々はNLPにおけるLLMの概要を概観する第一歩を踏み出した。
具体的には,(1)パラメータフリーズアプリケーションと(2)パラメータチューニングアプリケーションを含む統一分類を導入し,NLPにおけるLCMの現在の進歩を理解するための統一的な視点を提供する。
さらに,新たなフロンティアとそれに関連する課題を要約し,さらなる画期的な発展を促すことを目的とする。
本研究は,NLP における LLM の「ポテンシャルと限界」に関する貴重な知見を提供するとともに,NLP における有効な LLM 構築のための実践的ガイドとしても機能することを願っている。
関連論文リスト
- A Survey of Prompt Engineering Methods in Large Language Models for Different NLP Tasks [0.0]
大規模言語モデル(LLM)は多くの異なる自然言語処理(NLP)タスクにおいて顕著なパフォーマンスを示している。
プロンプトエンジニアリングは、大きなパフォーマンス向上を達成するために、既に存在するLLMの能力に追加する上で重要な役割を担います。
本稿では、異なるプロンプト手法を要約し、それらが用いた異なるNLPタスクに基づいてそれらをまとめる。
論文 参考訳(メタデータ) (2024-07-17T20:23:19Z) - Beyond Generative Artificial Intelligence: Roadmap for Natural Language Generation [0.0]
本稿では,自然言語処理分野(NLP)とそのサブフィールド自然言語生成分野(NLG)に焦点を当てる。
LLMファミリーの中では、人気のあるGPT-4、Bard、より具体的にはChatGPTのようなツールがある。
このシナリオは、NLGの次のステップと、新たな課題に対処するために、フィールドをどのように適応し、進化させるかについて、新たな疑問を提起する。
論文 参考訳(メタデータ) (2024-07-15T09:07:07Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Using Large Language Models for Natural Language Processing Tasks in Requirements Engineering: A Systematic Guideline [2.6644624823848426]
大規模言語モデル(LLM)は、要求工学(RE)タスクを自動化するための基盤となる。
本章は、LLMに関する本質的な知識を読者に提供することを目的としている。
学生、研究者、実践者が特定の目的に対処するためにLLMを活用するための包括的なガイドラインを提供する。
論文 参考訳(メタデータ) (2024-02-21T14:00:52Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - A Survey on Prompting Techniques in LLMs [0.0]
自己回帰型大規模言語モデルは自然言語処理のランドスケープに変化をもたらした。
本研究は,既存の文献の分類手法について紹介し,この分類法に基づく簡潔な調査を行う。
我々は、将来の研究の方向性として役立つ自己回帰型LSMの推進という領域において、いくつかの未解決の問題を特定した。
論文 参考訳(メタデータ) (2023-11-28T17:56:34Z) - NLPBench: Evaluating Large Language Models on Solving NLP Problems [41.01588131136101]
大規模言語モデル(LLM)は、自然言語処理(NLP)の能力を高めることを約束している。
イェール大学の最終試験から得られた様々なNLPトピックにまたがる378の大学レベルのNLP質問を含む,ユニークなベンチマークデータセットであるNLPBenchを提案する。
GPT-3.5/4, PaLM-2, LLAMA-2などのLCMに着目した評価では, チェーン・オブ・シークレット(CoT)やツリー・オブ・シークレット(ToT)といった先進的なプロンプト戦略が取り入れられている。
論文 参考訳(メタデータ) (2023-09-27T13:02:06Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
広範囲なテキストコーパスで訓練されたLarge Language Models (LLM) は、幅広い自然言語処理(NLP)タスクの先導的なソリューションとして登場した。
その顕著な性能にもかかわらず、これらのモデルは、人間の指示を誤解したり、偏見のあるコンテンツを生成したり、事実的に誤った情報を生成するといった、ある種の制限を受ける傾向にある。
本調査では,これらのアライメント技術の概要について概観する。
論文 参考訳(メタデータ) (2023-07-24T17:44:58Z) - Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond [48.70557995528463]
このガイドは、研究者や実践者が大規模言語モデルを扱うための貴重な洞察とベストプラクティスを提供することを目的としている。
実世界のシナリオにおける LLM の実用的応用と限界を説明するために, 様々なユースケースと非利用事例を提示する。
論文 参考訳(メタデータ) (2023-04-26T17:52:30Z) - A Survey of Knowledge Enhanced Pre-trained Language Models [78.56931125512295]
我々は、知識強化事前学習言語モデル(KE-PLMs)の包括的なレビューを行う。
NLUでは、言語知識、テキスト知識、知識グラフ(KG)、ルール知識の4つのカテゴリに分類する。
NLGのKE-PLMは、KGベースと検索ベースに分類される。
論文 参考訳(メタデータ) (2022-11-11T04:29:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。